
Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Scienze Statistiche

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE STATISTICHE

CICLO XXIII

Measures of Variability for Graphical Models

Direttore della Scuola: Ch.mo Prof. Alessandra Salvan

Supervisore: Ch.mo Prof. Adriana Brogini

Co-supervisore: Ch.mo Prof. Korbinian Strimmer

Dottorando: Marco Scutari

31 Gennaio 2011

ジ
ン

セ
イ

人
生
の

か

か

貸
し
借
り
す
ま
せ

お
お
み
そ
か

大
晦
日

今
敏

Contents

Notation v

1 Introduction 1

1.1 Overview . 1

1.2 Main Contributions of the Thesis . 3

2 Bayesian Networks 5

2.1 An Introduction to Bayesian Networks 5

2.2 Bayesian Network Learning Algorithms 10

2.2.1 Constraint-based Algorithms . 11

2.2.2 Score-based Algorithms . 13

2.2.3 Hybrid Algorithms . 14

2.2.4 Parameter Learning . 15

2.3 Pearl’s Causality . 16

2.4 Bayesian and Markov Networks . 17

3 The bnlearn R Package 21

3.1 An Overview of bnlearn . 21

3.2 Manipulating Network Structures . 22

3.3 Learning a Bayesian Network . 26

3.3.1 Fundamental Assumptions of Structure Learning Algorithms . . 26

3.3.2 Choosing the Global and Local Distributions 27

3.3.3 Including Prior Information on the Data 31

3.3.4 Learning the Structure of the Network 32

3.3.5 Learning the Parameters . 36

3.4 Performing Inference on a Bayesian Network 38

3.4.1 Bootstrap . 38

i

Contents

3.4.2 Cross-Validation . 40

3.4.3 Conditional Probability Queries 42

3.5 Parallel Structure Learning for Bayesian Networks 43

3.5.1 Constraint-based Algorithms . 44

3.5.2 Score-based Algorithms . 48

3.5.3 Hybrid Algorithms . 50

4 Multivariate Discrete Distributions in Structure Modelling 51

4.1 Modelling Graphical Structures . 51

4.2 The Multivariate Bernoulli Distribution 55

4.2.1 Uncorrelation and Independence 55

4.2.2 Properties of the Covariance Matrix 58

4.2.3 Sequences of Multivariate Bernoulli Variables 59

4.3 The Multivariate Trinomial Distribution 59

4.3.1 Relationship with the Multivariate Bernoulli 61

4.3.2 Properties of the Covariance Matrix 62

4.4 Bootstrap and Variability . 64

4.4.1 Undirected Graphs . 64

4.4.2 Directed Acyclic Graphs . 67

5 Measuring the Variability of Network Structures 77

5.1 Descriptive Statistics for Undirected Graphs 77

5.2 Hypothesis Tests for Undirected Graphs 80

5.2.1 Asymptotic Inference . 80

5.2.2 Monte Carlo Inference and Parametric Bootstrap 84

5.3 Regularized Estimators and Statistics for Undirected Graphs 86

5.4 Measures of Variability for Directed Acyclic Graphs 89

6 Comparing Different Learning Strategies 93

6.1 Conditional Independence Tests and Network Structures 93

6.1.1 Permutation Tests . 95

6.1.2 Tests Based on Shrinkage Estimators 98

6.2 Learning Strategies and Structure Variability 100

6.2.1 Descriptive Statistics . 100

6.2.2 Testing Against the Maximum Entropy Distribution 103

7 Conclusions 107

ii

Contents

7.1 Open Problems . 108

A Moments of the Multivariate Trinomial Distribution 109

A.1 Number of directed acyclic graphs of given size 109

A.2 Moments for the 3-dimensional distribution 110

A.3 Moments for the 4-dimensional distribution 110

A.4 Moments for the 5-dimensional distribution 111

A.5 Moments for the 6-dimensional distribution 111

A.6 Moments for the 7-dimensional distribution 112

B Ledoit-Wolf Estimators for the Shrinkage Coefficient 113

Bibliography 117

iii

Notation

Random Variables

X random vector

Xi P X; X1, . . . , Xp random variables

A,B,C P X disjoint subsets of random variables

FXpxq cumulative distribution function

EpXiq expected value

VARpXiq variance

COVpXi, Xjq covariance

CORpXi, Xjq correlation

Σ � rσijs, i, j � 1, . . . , k covariance matrix

λ � rλ1, . . . , λks eigenvalues of the covariance matrix

Graphs

V node (vertex) set

v P V node (vertex)

A,B,C P V disjoint subsets of nodes

A arc set

a P A (directed) arc

G � pV, Aq directed acyclic graph (DAG)

E edge set

e P E edge (undirected arc)

U � pV, Eq undirected graph (UG)

v

Bayesian and Markov Networks

KKG graphical separation

KKP probabilistic independence

ΠXi parents of node Xi

SAB d-separating set for nodes A and B

C1, C2, . . ., Ck cliques

ψ1, ψ2, . . . , ψk potentials associated with the cliques

Conditional Independence Tests and Network Scores

MIpX,Y q mutual information

MIpX,Y |Zq conditional mutual information

X2pX,Y q Pearson’s X2

X2pX,Y |Zq conditional Pearson’s X2

ρXY Pearson’s correlation coefficient

ρXY |Z partial correlation coefficient

TpX,Y q correlation’s t test

TpX,Y |Zq partial correlation’s t test

ZpX,Y q Fisher’s Z test

ZpX,Y |Zq conditional Fisher’s Z test

BICpX |Gq Bayesian Information Criterion (BIC)

Multivariate Bernoulli and Trinomial

B � rB1, B2, . . . , BksT multivariate Bernoulli random vector

B1, B2, . . . , Bk, k P N Bernoulli random variables

Bi � Berppiq Bernoulli r.v. with probability of success pi

T � rT1, T2, . . . , TksT multivariate Trinomial random vector

T1, T2, . . . , Tk, k P N Trinomial random variables

Ti � Trippi1, pi2, pi3q Trinomial r.v. with parameters pi1, pi2, pi3

p parameter collection of a multivariate

Bernoulli or Trinomial random vector

p̃ reduced parameter collection of a multivariate

Bernoulli or Trinomial random vector

vi

Probabilistic Models for Network Structures

eij � Eij Bernoulli r.v. associated with an edge

pij probability that Xi �Xj is present in the graph

aij � Aij Trinomial r.v. associated with an arc
ÝÑaij arc Xi Ñ Xj , also meaning tXi Ñ Xju P A
ÐÝaij arc Xi Ð Xj , also meaning tXi Ð Xju P A
åij event tXi Ñ Xj , Xi Ð Xju R A
ÝÑpij probability that tXi Ñ Xju P A
ÐÝpij probability that tXi Ð Xju P A
p̊ij probability that tXi Ñ Xj , Xi Ð Xju R A

Measures of Variability

trpΣq trace

detpΣq determinant

|||Σ|||F Frobenius matrix norm

VART pΣq total variance

VARGpΣq generalized variance

VARN pΣq squared Frobenius matrix norm

VART pΣq normalized total variance

VARGpΣq normalized generalized variance

VARN pΣq normalized squared Frobenius matrix norm

tT test statistic for the total variance

tG1 , tG2 test statistics for the generalized variance

tN Nagao’s test statistic

α̂T , α̂G1 , α̂G2 , α̂N observed p-values

α̃T , α̃G1 , α̃G2 , α̃N p-values with finite sample correction

Shrinkage estimators

Σ̂ maximum likelihood estimator of Σ

Σ̃ shrinkage estimator of Σ

T covariance matrix of the target distribution

λ shrinkage coefficient

λ� Ledoit-Wolf estimator for the shrinakge coef.

vii

Chapter 1

Introduction

1.1 Overview

In recent years, Bayesian networks have been successfully applied in several differ-

ent disciplines, including medicine, biology and epidemiology (see for example Fried-

man et al. (2000) and Holmes and Jain (2008)). This has been made possible by

the rapid evolution of structure learning algorithms, from constraint-based ones (such

as PC (Spirtes et al., 2000), Grow-Shrink (Margaritis, 2003), IAMB (Tsamardinos

et al., 2003) and its variants (Yaramakala and Margaritis, 2005)) to score-based (such

as TABU search (Russell and Norvig, 2009), Greedy Equivalence Search (Chicker-

ing, 2002) and genetic algorithms (Larrañaga et al., 1997)) and hybrid ones (such as

Max-Min Hill-Climbing (Tsamardinos et al., 2006)).

The main goal in the development of these algorithms has been the reduction of

the number of either independence tests or score comparisons needed to learn the

structure of the Bayesian network. Their correctness has been proved assuming either

very large sample sizes in relation to the number of variables (in the case of Greedy

Equivalence Search) or the absence of both false positives and false negatives (in the

case of Grow-Shrink and IAMB). In most cases the characteristics of the learned net-

works have been studied using a small number of reference data sets (Elidan, 2001) as

benchmarks, and differences from the true structure have been measured with purely

descriptive measures such as Hamming distance (Jungnickel, 2008).

This approach to model validation is not possible for real world data sets, as the true

structure of their probability distribution is not known. An alternative is provided by

the use of either parametric or nonparametric bootstrap (Efron and Tibshirani, 1993).

By applying a learning algorithm to a sufficiently large number of bootstrap samples

1

it is possible to obtain the empirical probability of any feature of the resulting network

(Friedman et al., 1999a), such as the structure of the Markov Blanket of a particular

node. The fundamental limit in the interpretation of the results is that the “reasonable”

level of confidence for thresholding depends on the data and the learning algorithm.

In this thesis we extend the aforementioned bootstrap-based approach for the in-

ference on the structure of a Bayesian network. The directed graph representing the

network structure and its underlying undirected graph are modelled using a multi-

variate extension of the Bernoulli and Trinomial distributions (Krummenauer, 1998b);

each component is associated with an arc. These assumptions allow the derivation of

both exact and asymptotic measures of the variability of the network structure or any

of its parts (Scutari, 2009). These measures are then applied to some common learn-

ing strategies used in literature using the implementation provided by the bnlearn R

package (Scutari, 2010b).

The outline of the thesis is as follows.

Chapter 2 provides an introduction to the theory of Bayesian networks, including

their definition, their fundamental properties and a brief overview of their relationship

with Markov networks. Common algorithms for model estimation are then introduced.

Chapter 3 illustrates features of the bnlearn package using synthetic data sets.

Chapter 4 introduces the multivariate Bernoulli and Trinomial distributions and

derives the probabilistic properties related to their first and second order moments.

Chapter 5 uses the results introduced in the previous chapter to study the behaviour

of three univariate measures of multivariate variability from classic literature (total

variance, generalized variance and the squared Frobenius matrix norm) when applied

to the structure of Bayesian and Markov networks. Exact and asymptotic measures of

variability are derived, and their properties are studied under the multivariate Bernoulli

and Trinomial assumptions.

Chapter 6 examines the performance of some common learning strategies found

in current literature using the measures of variability introduced in this thesis as well

as the ones commonly found in literature. The simulations are performed using the

bnlearn package and accepted reference data sets.

Chapter 7 provides the conclusion and discussion and explores possible directions

for future research.

2

1.2 Main Contributions of the Thesis

The original contributions of this Ph.D. thesis, which includes both theoretical results

and practical applications, are listed below.

• The derivation of the probabilistic properties of two multivariate discrete distri-

butions, the multivariate Bernoulli and the multivariate Trinomial distribution

(Krummenauer, 1998b), with particular attention to the first two moments and

the related quantities (Scutari, 2009). These distributions have proved to be use-

ful in defining a formal model for the structure of a graphical model and studying

its behaviour when using bootstrap resampling (Friedman et al., 1999a). Fur-

thermore, these two distributions have applications to the theory of experimental

design in addition to being of general interest in probability and random graph

theory. The investigation of their information-theoretic properties is also being

explored in recent literature (Leonenko and Seleznjev, 2010).

• The study of three univariate measures of multivariate variability (total variance,

generalized variance, and the Frobenius matrix norm) to measure the variabil-

ity of the structure of a Bayesian network (Scutari, 2009). This is of interest in

settings where the network structure itself (rather than the parameters of the

probability distribution) is the quantity of interest, such as in causal graphical

models. The application of the multivariate Bernoulli and Trinomial distribu-

tions to this problem allows the derivation of descriptive statistics with a clear

interpretation (unlike quantities like Hamming distance) and hypothesis testing.

The extension of this approach to other graphical models based on undirected

graphs, such as Markov networks, is straightforward.

• Regularized estimation based on the work of Ledoit and Wolf (2003), Hausser and

Strimmer (2009) and Schäfer and Strimmer (2005) is applied both to the learning

of Bayesian networks and to the subsequent inference based on the multivariate

Bernoulli.

• The implementation of an R package (R Development Core Team, 2010) called

bnlearn for learning and performing inference on Bayesian networks (Scutari,

2010b). bnlearn provides a free implementation of several classic and modern

learning algorithms and inference procedures (both exact and approximate). For-

merly some of these learning algorithms lacked a free-software implementation,

and this limited their usefulness in scientific research. Furthermore, each learn-

3

ing algorithm can be used with many different conditional independence tests

or score functions, unlike most available software packages. Both discrete and

continuous data are supported, and several reference data sets (Elidan, 2001; Ed-

wards, 2000) are included in the package itself. A novel, parallel implementation

of some structure learning algorithms is also introduced.

Thanks to its free-software licensing bnlearn has seen a wide adoption and has

been constantly updated and improved since its first public release in September

2007. It has been used by the author in two other papers (Chavan et al., 2009;

Nagarajan et al., 2010) and it will be prominently featured in a book on graphical

models by Springer written by the author with Radharkishnan Nagarajan and

Sujay Datta (Nagarajan et al., 2011). Several independent researchers have also

started using bnlearn in their work, covering such different fields as bioinformat-

ics (Frohlich et al., 2009; Lee, 2010; Lin et al., 2010), image analysis (Hasanat

et al., 2010) and social studies (Ge et al., 2010).

4

Chapter 2

Bayesian Networks

In this chapter we will cover the definition and fundamental properties of Bayesian

networks, along with a brief overview of their relationship with Markov networks. Then

we will introduce some common algorithms for model estimation present in literature.

2.1 An Introduction to Bayesian Networks

Bayesian networks are a class of graphical models, which allow an intuitive repre-

sentation of the probabilistic structure of multivariate data using graphs. They are

composed by two parts:

• a set of random variables X � tX1, X2, . . . , Xpu describing the features of the

data. The probability distribution of X is called the global distribution of the

data, while the ones associated with each Xi P X are called local distributions.

• a directed acyclic graph (DAG), denoted G � pV, Aq. Each node v P V is as-

sociated with one variable Xi, and they are often referred to interchangeably.

The directed arcs a P A that connect them represent direct stochastic dependen-

cies; so if there is no arc connecting two nodes the corresponding variables are

either marginally independent or conditionally independent given a subset of the

remaining variables.

The correspondence between the graphical separation (denoted with KKG) induced by

the absence of a particular arc and probabilistic independence (denoted with KKP)

provides a direct and easily interpretable way to express how the features interact with

each other. Formally it is called an independency map (Pearl, 1988) and is defined as

follows.

5

Definition 2.1. A graph G is a dependency map (or D-map) of the probabilistic de-

pendence structure P of X if there is a one-to-one correspondence between the random

variables in X and the nodes V of G, such that for all disjoint subsets A, B, C of X

we have

A KKP B |C ùñ A KKG B |C. (2.1)

Similarly, G is an independency map (or I-map) of P if

A KKP B |C ðù A KKG B |C. (2.2)

G is said to be a perfect map of P if it is both a D-map and an I-map, that is

A KKP B |C ðñ A KKG B |C, (2.3)

and in this case P is said to be isomorphic to G.

Graphical separation, called d-separation (as in directed separation), is also defined

to provide a clear correspondence between the topology of the directed acyclic graph

G and the dependence relationships it represents.

Definition 2.2. If A, B and C are three disjoint subsets of nodes in a directed acyclic

graph G, then C is said to d-separate A from B, denoted A KKG B |C, if along every

path between a node in A and a node in B there is a node v satisfying one of the

following two conditions:

1. v has converging arcs (i.e. there are two arcs pointing to v from the adjacent

nodes in the path) and none of v or its descendants (i.e. the nodes that can be

reached from v) are in C.

2. v is in C and does not have converging arcs.

These two definitions, even though they appear completely abstract in nature, form

the core of all the properties which make Bayesian networks a very useful tool in

modelling multivariate data.

A very important one is the decomposition of the global distribution into the local

ones, which is an application of the chain rule of probability and is known as the

Markov property of Bayesian networks. For discrete data the probability function P of

X can be written as

P pXq �
p¹
i�1

P pXi |ΠXiq (2.4)

6

C
A B

C
A B

C
A B

Figure 2.1: Graphical separation, conditional independence and probability decomposition for
the three fundamental connections (from top to bottom): converging connection, serial connec-
tion and diverging connection.

where ΠXi is the set of the parents of Xi. A similar result holds for continuous data,

whose global density function fX can be written as

f pXq �
p¹
i�1

f pXi |ΠXiq , (2.5)

and for mixed data (which includes both discrete and continuous features). A simple

application of this property is shown in Figure 2.1 using the fundamental connections

(Jensen, 2001), the three possible configurations of three nodes and two arcs. In the

first step, which is called a convergent connection or v-structure, C has two incoming

arcs (thus violating the second condition of Definition 2.2) and is included in the set

of nodes we are conditioning on (thus also violating the first condition). Therefore, we

can conclude that C does not d-separate A and B and that, according to Definition

2.1, we cannot conclude that A is independent from B given C. We can also see that

given the structure of the converging connection we have ΠA � t∅u, ΠB � t∅u and

ΠC � tA,Bu, so according to Equation 2.4

P pXq � P pAqP pBqP pC |A,Bq . (2.6)

Again we can see that A and B are not conditionally independent given C because C

depends on their joint distribution. On the other hand, A and B are independent given

C in the other two connections (which are called, respectively, serial and diverging)

because both the conditions in Definition 2.2 are satisfied. In the serial connection we

7

E

AB

CD

F E

AB

CD

F E

AB

CD

F

Figure 2.2: Two score equivalent Bayesian networks (on the left and in the middle) and the
partially directed graph representing the equivalence class they belong to (on the right). Note
that the arc D Ñ E is a compelled arc, because its reverse E Ñ D would introduce two additional
v-structures in the graph.

have that ΠA � t∅u, ΠB � tCu and ΠC � tAu, so

P pXq � P pAqP pC |AqP pB |Cq . (2.7)

It is easy to show that the diverging connection results in an equivalent decomposition,

which can be obtained from the previous one by repeated applications of Bayes’ theo-

rem. Therefore these two networks are said to be equivalent, as they lead to the same

conditional independence statements and identify the same probability distribution.

Because equivalence is symmetric, reflexive and transitive, this relation defines a

set of equivalence classes over the possible graph structures of a Bayesian network.

Generalizing from the example presented above, it can be shown that the only arcs

whose direction is needed to identify an equivalence class are those belonging to a

v-structure (Chickering, 1995); changing the direction of any other arc does not change

the conditional independence statements encoded by the network, and results in another

element of the same equivalence class.

Theorem 2.1. Two Bayesian networks defined over the same set of variables are

equivalent if and only if they have the same skeleton (i.e. the same underlying undirected

graph) and the same v-structures.

Equivalence classes are usually represented with partially directed acyclic graphs

(PDAGs) in which only arcs belonging to v-structures and those which could intro-

duce additional v-structures or cycles are directed. Such arcs are called compelled

(Pearl, 1988), because their direction is defined by the equivalence class of the network

even though they are not part of any v-structure. A simple example is shown in Figure

2.2.

8

G

F

C

KB

A

H

E

D

L G

F

C

KB

A

H

E

D

L

Bayesian network Markov network

Markov blanket

Parents Children

Children's other
parents

Neighbours

Figure 2.3: The Markov blanket of the node A in a Bayesian network (on the left) and in the
corresponding Markov network given by its moral graph (on the right). The two graphs express
the same dependence structure, so the Markov blanket of A is the same.

Another fundamental quantity of interest that is closely related to Definitions 2.1

and 2.2 is the Markov blanket of a node, the set of nodes that completely d-separates

that node from the rest of the graph.

Definition 2.3. The Markov blanket of a node A P V is the minimal subset S of V

such that

A KKP V � S�A |S. (2.8)

In any Bayesian network the Markov blanket of a node A is the set consisting of the

parents of A, the children of A and all the other nodes sharing a child with A.

In other words, the Markov blanket of a variable A identifies which variables inter-

act directly with A; once their values are known, the behaviour of A does not depend

on any other variable in the network. Essentially it is an extension of the concept of

neighbourhood (which would contain only the parents and the children of A) adapted

to d-separation, which is why it also includes the nodes sharing a child with A. Like

the neighbourhoods, Markov blankets are symmetric; if a variable A is in the Markov

blanket of B, then B is in the Markov blanket in A. Intuitively this is a direct conse-

quence of the above interpretation of the meaning of the Markov blanket; if A interacts

directly with B, then B also interacts directly with A. We can also easily prove that

this is the case from Definition 2.3.

9

Furthermore, Markov blankets provide an easy way to compare Bayesian networks

with graphical models based on undirected graphs, which are known as Markov net-

works or Markov random fields. The directed acyclic graph of a Bayesian network can

be transformed in the undirected graph of the corresponding Markov networks by:

1. connecting the non-adjacent nodes in each v-structure with an undirected arc,

usually called an edge; this is equivalent to adding an edge between any pair of

nodes belonging to the same Markov blanket.

2. ignoring the direction of the other arcs, effectively replacing them with edges.

This transformation is called moralization (because it “marries” non-adjacent parents

sharing a common child) and the resulting graph is called a moral graph (Castillo et al.,

1997).

2.2 Bayesian Network Learning Algorithms

Fitting graphical models is called learning, a term borrowed from expert systems and

artificial intelligence theory, and in general requires a two-step process.

The first step consists in finding the graph structure that encodes the conditional

independencies present in the data. Ideally it should coincide with the minimal I-map

of the global distribution, or it should at least identify a distribution as close as possible

to the correct one in the probability space. This step is called network structure or

simply structure learning (Korb and Nicholson, 2004; Koller and Friedman, 2009), and

is similar in approaches and terminology to model selection procedures for classical sta-

tistical models. Several algorithms have been presented in literature for this problem,

thanks to the application of many results from probability, information and optimiza-

tion theory. Despite the (sometimes confusing) variety of theoretical backgrounds and

terminology they can all be traced to only three approaches: constraint-based, score-

based and hybrid.

The second step is called parameter learning and, as the name suggests, deals with the

estimation of the parameters of the global distribution. Assuming the graph structure is

known from the previous step, this can be done efficiently by estimating the parameters

of the local distributions.

Both structure and parameter learning are often performed using a combination

of numerical algorithms and prior knowledge on the data. Even though significant

progress has been made on the performance and scalability of learning algorithms, an

10

effective use of prior knowledge and relevant theoretical results can still speed up the

learning process severalfold and improve the accuracy of the resulting model. Such a

boost has been used in the past to overcome the limitations on computational power,

leading to the development of the so-called expert systems (for real-world examples see

the MUNIN (Andreassen et al., 1989), ALARM (Beinlich et al., 1989) and Hailfinder

(Abramson et al., 1996) networks); it can still be used today to tackle larger and larger

problems and obtain reliable results.

2.2.1 Constraint-based Algorithms

Constraint-based algorithms are based on the seminal work of Pearl on maps and

its application to causal graphical models. His Inductive Causation (IC) algorithm

(Verma and Pearl, 1991) provides a framework for learning the structure of Bayesian

networks using conditional independence tests.

The details of the IC algorithm are illustrated in Algorithm 2.1. The first step

identifies which pairs of variables are connected by an arc, regardless of its direction;

clearly they cannot be independent given any other subset of variables, because they

cannot be d-separated. This step can also be seen as a backwards selection procedure

starting from the saturated model (the graph in which every pair of nodes is connected

Algorithm 2.1 Inductive Causation Algorithm

1. For each pair of variables A and B in V search for set SAB � V such that A and
B are independent given SAB and A,B R SAB. If there is no such a set, place an
undirected arc between A and B.

2. For each pair of non-adjacent variables A and B with a common neighbour C,
check whether C P SAB. If it is not, set the direction of the arcs A�C and C�B
to AÑ C and C Ð B.

3. Set the direction of arcs which are still undirected by applying recursively the
following two rules:

(a) if A is adjacent to B and there is a strictly directed path from A to B then
set the direction of A�B to AÑ B.

(b) if A and B are not adjacent but AÑ C and C �B, then change the latter
to C Ñ B.

4. Return the resulting (partially) directed acyclic graph.

11

by an arc) and removing arcs whenever the removal can be justified on grounds of

conditional independence.

The second step deals with the identification of the v-structures among all the pairs

of non-adjacent nodes A and B with a common neighbour C. V-structures are the

only fundamental connection in which the two non-adjacent nodes are not independent

conditional on the third one; so if there is a subset of nodes that contains C and

d-separates A and B the three nodes are part of a v-structure centered on C. This

condition can be verified by performing a conditional independence test for A and B

against every possible subset of their common neighbours that includes C.

At the end of the second step both the skeleton and the v-structures of the network are

known, so the equivalence class the Bayesian network belongs to is uniquely identified.

The third and last step of the IC algorithm identifies compelled arcs and orients them

recursively to obtain the partially directed acyclic graph describing the equivalence

class identified by the previous steps.

A major problem of the IC algorithm is that the first two steps cannot be applied in

the form described in Algorithm 2.1 to any real world problem due to the exponential

number of conditional independence relationship that would need to be examined. This

problem has led to the development of many algorithms, such as:

• PC : the first practical application of the IC algorithm (Spirtes et al., 2000).

• Grow-Shrink (GS): based on the Grow-Shrink Markov blanket algorithm (Mar-

garitis, 2003), a simple forward selection Markov blanket detection algorithm.

• Incremental Association (IAMB): based on the Incremental Association Markov

blanket algorithm (Tsamardinos et al., 2003), a two-phase selection scheme (a

forward selection followed by an attempt to remove false positives).

• Fast Incremental Association (Fast-IAMB): a variant of IAMB which uses spec-

ulative stepwise forward selection to reduce the number of conditional indepen-

dence tests (Yaramakala and Margaritis, 2005).

• Interleaved Incremental Association (Inter-IAMB): another variant of IAMB which

uses forward stepwise selection (Tsamardinos et al., 2003) to avoid false positives

in the Markov blanket detection phase.

All these algorithms with the exception of PC first learn the Markov blanket of each

node. This preliminary step greatly simplifies the identification of neighbours (which

are a subset of the Markov blanket of the node) and of the v-structures (both the

12

Algorithm 2.2 Hill Climbing Algorithm

1. Choose a network structure G over V, usually (but not necessarily) empty.

2. Compute the score of G, denoted as ScoreG � ScorepGq.
3. Set maxscore � ScoreG.

4. Repeat the following steps as long as maxscore increases:

(a) For every possible arc addition, deletion or reversal not resulting in a cyclic
network:

i. compute the score of the modified network G�, ScoreG� � ScorepG�q.
ii. if ScoreG� ¡ ScoreG, set G � G� and ScoreG � ScoreG� .

(b) update maxscore with the new value of ScoreG.

5. Return G.

Markov blankets of A and B must include C). This in turn results in a significant

reduction of the overall computational complexity of the learning algorithm, which

is usually measured with the number of conditional independence tests. Further im-

provements are possible by leveraging the symmetry of Markov blankets introduced in

Section 2.1; an example will be shown in Chapter 3.

2.2.2 Score-based Algorithms

Score-based learning algorithms represent the application of general optimization

techniques to the problem of learning the structure of a Bayesian network. Each can-

didate network is assigned a network score reflecting its goodness of fit, which is then

taken as an objective function to maximize.

The main limitation of this approach lies in the dimension of the space of directed

acyclic graphs, which grows more than exponentially in the number of nodes (Harary

and Palmer, 1973). This means that an exhaustive search is not feasible in all but the

most trivial cases, and has led to an extensive use of heuristic optimization algorithms.

Some examples are:

• greedy search algorithms such as hill-climbing with random restarts or tabu search

(Bouckaert, 1995). These algorithms explore the search space starting from a

network structure (usually without any arc) and adding, deleting or reversing

one arc at a time until the score can no longer be improved (see Algorithm 2.2);

13

• genetic algorithms, which simulate natural evolution through the iterative selec-

tion of the “fittest” models and the hybridization of their characteristics (Larrañaga

et al., 1997). In this case the search space is explored through the crossover (which

combines the structure of two networks) and mutation (which introduces random

alterations) stochastic operators;

• the simulated annealing algorithm (Bouckaert, 1995), which performs a stochastic

local search by (always) accepting changes that increase the network score and,

at the same time, allowing changes that decrease it (with a probability inversely

proportional to the score decrease).

A broad overview of these approaches is present in Russell and Norvig (2009).

2.2.3 Hybrid Algorithms

Hybrid learning algorithms combine constraint and score-based algorithms to offset

their weaknesses and produce reliable network structures in a wide variety of situations.

The two best-known members of this family are the Sparse Candidate algorithm (SC)

by Friedman et al. (1999b) and the Max-Min Hill-Climbing algorithm (MMHC) by

Tsamardinos et al. (2006). The former is illustrated in Algorithm 2.3.

Both these algorithms are based on two steps, called restrict and maximize. In the

first one the candidate set for the parents of each node Xi is reduced from the whole

node set V to a smaller set Ci � V of nodes whose behaviour has been shown to be

related in some way to that of Xi. This in turn results in a smaller and (usually) more

Algorithm 2.3 Sparse Candidate Algorithm

1. Choose a network structure G over V, usually (but not necessarily) empty.

2. Repeat the following steps until convergence:

(a) Restrict: select a set Ci of candidate parents for each node Xi P V, which
must include the parents of Xi in G.

(b) Maximize: find the network structure G� that maximizes ScorepG�q among
the networks in which the parents of each node Xi are included in the cor-
responding set Ci.

(c) set G � G�.

3. return G.

14

regular search space for the second step, which seeks the network that maximizes a

given score function among the ones that satisfy the constraints imposed by the Ci

sets.

In the Sparse Candidate algorithm these two steps are applied iteratively until there

is no change in the network or no network improves the network score; the choice of

the heuristics used to perform them is left to the implementation. In the Max-Min

Hill-Climbing algorithm, on the other hand, restrict and maximize are performed only

once; the Max-Min Parents and Children (MMPC) heuristic is used to learn the can-

didate sets Ci and a hill-climbing greedy search to find the optimal network.

2.2.4 Parameter Learning

Once the structure of the network has been learned from the data, the task of esti-

mating and updating the parameters of the global distribution is greatly simplified by

the application of the Markov property.

Local distributions in practice involve only a small number of variables; furthermore

their dimension usually does not scale with the size of X (and is often assumed to be

bounded by a constant when computing the computational complexity of algorithms),

thus avoiding the so called curse of dimensionality. This means that each local distribu-

tion has a comparatively small number of parameters to estimate from the sample, and

that estimates are more accurate due to the better ratio between the size of parameter

space and the sample size.

The number of parameters needed to uniquely identify the global distribution, which

is the sum of the number of parameters of the local ones, is also reduced because the

conditional independence relationships encoded in the network structure fix large parts

of the parameter space. For example, in graphical Gaussian models partial correlation

coefficients involving (conditionally) independent variables are equal to zero by defini-

tion, and joint frequencies factorize into marginal ones in multinomial distributions.

However, parameter estimation is still problematic in many situations. For example it

is increasingly common to have sample sizes much smaller than the number of variables

included in the model; this is typical of microarray data, which have a few ten or

hundred observations and thousands of genes. Such a situation, which is called “small

n, large p”, leads to estimates with high variability unless particular care is taken

both in structure and parameter learning (Castelo and Roverato, 2006; Schäfer and

Strimmer, 2005; Hastie et al., 2009).

15

Dense networks, which have a high number of arcs compared their nodes, represent

another significant challenge. Exact inference quickly becomes unfeasible as the number

of nodes increases, and even approximate procedures based on Monte Carlo simulations

and bootstrap resampling require large computational resources (Koller and Friedman,

2009; Korb and Nicholson, 2004). Numerical problems stemming from floating point

approximations (Goldberg, 1991) and approximate numerical algorithms (such as the

ones used in matrix inversion and eigenvalue computation) should also be taken into

account.

2.3 Pearl’s Causality

In Section 2.1 Bayesian networks have been defined in terms of conditional inde-

pendence statements and probabilistic properties, without any implication that arcs

should represent cause-and-effect relationships. The existence of equivalence classes of

networks undistinguishable from a probabilistic point of view provides a simple example

of this fact.

However, from an intuitive point of view it can be argued that a “good” Bayesian

network structure should represent the causal structure of the data it is describing.

Such networks are usually fairly sparse (i.e. they have a number of arcs comparable to

the number of nodes) and their interpretation is at the same time clear and meaningful,

as explained by Pearl (2009) in his book on causality:

It seems that if conditional independence judgements are byproducts of

stored causal relationships, then tapping and representing those relation-

ships directly would be a more natural and more reliable way of expressing

what we know or believe about the world. This is indeed the philosophy

behind causal Bayesian networks.

Learning such causal models, especially from observational data, presents significant

challenges. In particular three additional assumptions are needed:

• each variable Xi P X is conditionally independent of its non-effects, both direct

and indirect, given its direct causes. This assumption is called the causal Markov

assumption, and represents the causal interpretation of the Markov property in-

troduced in Section 2.1;

• there must exist a network structure which is faithful to the dependence structure

of X;

16

• there must be no latent variables (unobserved factors influencing the variables in

the network) acting as confounding factors. Such variables may induce spurious

correlations between the observed variables, thus introducing bias in the causal

network. Even though this is often listed as a separate assumption, it is really

a corollary of the first two: the presence of unobserved variables breaks the

faithfulness (because the network structure does not include them) and possibly

the causal Markov property (if an arc is wrongly added between the observed

variables due to the influence of the latent one).

These assumptions are difficult to verify in real world settings, as the set of the potential

confounding factors is not usually known. The best we can do is to address this issue,

along with selection bias, by implementing a carefully planned experimental design.

Furthermore, even when dealing with interventional data collected from a scientific

experiment (where we can set the value of at least some variables and observe the

resulting changes) there are usually multiple equivalent network structures that repre-

sent reasonable causal models. Many arcs may not have a definite direction, resulting

in graph structures differing even in the topological ordering of the nodes. When the

sample size is small there may also be several non-equivalent networks fitting the data

equally well. So, in general, we are not able to identify a single, “best”, causal network

but rather a small set of likely causal networks that fit our knowledge of the data.

2.4 Bayesian and Markov Networks

Markov networks (also known as Markov random fields) are, together with Bayesian

networks, the subjects of most past and current literature on graphical models.

These two classes of graphical models share many common traits. Markov networks

are also defined as the minimal I-map of the dependence structure P of X, the only

difference being that in this case U � pV, Eq is an undirected graph. All the arcs of U ,

which are usually called edges in this setting, are undirected ; the relationship between

the two nodes linked by an edge is symmetric, without the distinction between parents

and children that characterizes Bayesian networks.

Graphical separation (which is called undirected separation or u-separation in Castillo

et al. (1997)) is easily defined due to this symmetry.

Definition 2.4. If A, B and C are three disjoint subsets of nodes in an undirected

graph U , then C is said to separate A from B, denoted A KKG B |C, if every path

between a node in A and a node in B contains at least one node in C.

17

On the other hand, the decomposition of the global distribution of X given by the

Markov property is less straightforward because local distributions are not associated

with single nodes, but with the cliques (maximal subsets of nodes in which each element

is adjacent to all the others) C1, C2, . . ., Ck present in the graph; so

PpXq �
k¹
i�1

ψipCiq for discrete data and (2.9)

fpXq �
k¹
i�1

ψipCiq for continuous data. (2.10)

The functions ψ1, ψ2, . . . , ψk are called Gibbs’ potentials (Pearl, 1988), factor potentials

(Castillo et al., 1997) or simply potentials, and are non-negative functions representing

the relative mass of probability of each clique. They are proper probability or density

functions only when the graph is decomposable or triangulated, that is when it con-

tains no induced cycles other than triangles. With any other type of graph inference

becomes very hard, if possible at all, because ψ1, ψ2, . . . , ψk have no direct statistical

interpretation. Decomposable graphs are also called chordal (Diestel, 2005) because

any cycle of length at least four has a chord (a link between two nodes in a cycle that

is not contained in the cycle itself). In this case the global distribution factorizes again

according to the chain rule and can be written as

PpXq �
±k
i�1 PpCiq±k
i�1 PpSiq

for discrete data and (2.11)

fpXq �
±k
i�1 fpCiq±k
i�1 fpSiq

for continuous data, (2.12)

where Si are the nodes of Ci which are also part of any other clique up to Ci�1 (Pearl,

1988).

The two characterizations of graphical separation and of the Markov properties pre-

sented above do not appear to be closely related, to the point that these two classes of

graphical models seem to be very different in construction and interpretation. There

are indeed dependency models that have an undirected perfect map but not a directed

acyclic one, and vice versa (see Pearl (1988), pages 126 – 127 for a simple example of a

dependency structure that cannot be represented as a Bayesian network). However, it

can be shown (Pearl, 1988; Castillo et al., 1997) that every dependency structure that

can be expressed by a decomposable graph can be modeled both by a Markov network

and a Bayesian network. This is clearly the case for the small networks shown in Figure

18

2.3, as the undirected graph obtained from the Bayesian network by moralization is

decomposable. It can also be shown that every dependency model expressible by an

undirected graph is also expressible by a directed acyclic graph, with the addition of

some auxiliary nodes. These two results indicate that there is a significant overlap

between Markov and Bayesian networks, and that in many cases both can be used to

the same effect.

19

Chapter 3

The bnlearn R Package

In this chapter we will provide an overview of the features implemented in the

bnlearn R package with the help of learning.test, a simple data set shipped with

bnlearn, and hailfinder, a reference network from the Bayesian network repository

(Elidan, 2001). In particular, we will focus on the functions for learning the structure

and the parameters of Bayesian networks, thus covering the most common learning

strategies present in modern literature. Furthermore, the parallel implementations of

some of the above methods will be introduced.

3.1 An Overview of bnlearn

bnlearn (Scutari, 2010b) is an R package (R Development Core Team, 2010) imple-

menting several algorithms for learning the structure of Bayesian networks, as well as

support for basic parametric and bootstrap inference, conditional probability queries

and cross-validation (Koller and Friedman, 2009). It is licensed under the GNU Public

License (GPL), version 2 or later. bnlearn focuses on three areas:

• the creation and manipulation of network structures. Both are achieved in a

user-friendly and consistent way through the use of an ad-hoc class called bn and

its methods.

• learning the structure of Bayesian networks and estimating its parameters. For-

merly some of these learning algorithms lacked a free-software implementation,

which limited their usefulness in scientific research. Furthermore, learning algo-

rithms can be chosen separately from the statistical criterion they are based on

(which is usually not possible in the reference implementation provided by the

21

algorithm’s authors), so that the best one for the data at hand can be used.

• performing inferential procedures. Some common inference procedures, both ex-

act and approximate, are implemented; among them are prediction, bootstrap,

cross-validation and conditional probability queries.

Both discrete and continuous data are supported. Several functions can use the func-

tionality provided by the snow package (Tierney et al., 2008) to improve their perfor-

mance via distributed and parallel computing. All the network scores and conditional

independence tests used in the learning algorithms are also available for independent

use; together with the functions for graph manipulation they allow the user to design

custom learning strategies.

Several reference data sets from literature, both small (Lauritzen and Spiegelhalter,

1988; Mardia et al., 1979) and large (Beinlich et al., 1989; Abramson et al., 1996;

Elidan, 2001), are included in the package to simplify performance measurements and

improve examples’ reproducibility. R scripts to generate more observations are included

for synthetic data sets, and it is also possible to generate more observations from the

Bayesian networks learned from real-world data sets.

Advanced plotting options are provided by the Rgraphviz package (Gentry et al.,

2010) for network structures and by the lattice package for diagnostic plots (Sarkar,

2008).

3.2 Manipulating Network Structures

bnlearn and its dependencies (the utils package, which is bundled with R) are all

available from CRAN, as are the suggested packages snow and graph (Gentleman

et al., 2010). The last suggested package, Rgraphviz (Gentry et al., 2010), can be

installed from BioConductor and is loaded along with bnlearn if present.

1 > library(bnlearn)

2 Loading required package: Rgraphviz

3 Loading required package: graph

4 Loading required package: grid

5 Package Rgraphviz loaded successfully.

Once bnlearn is loaded, we can access its functions, documentation and data sets,

such as learning.test.

1 > data(learning.test)

22

learning.test contains six discrete variables, stored as factors, each with 2 (for F) or

3 (for A, B, C, D and E) levels. Its dependence structure is particularly simple, as can

be seen both from Figure 3.1 and from the decomposition of the global distribution,

P pXq � PpAqPpCqPpF qPpB |AqPpD |A,CqPpE |B,F q. (3.1)

The corresponding network structure can be created in three different ways. First,

we can use a model string, which is expresses the dependence structure in terms of

conditional dependence (note the similarity with the right hand of Equation 3.1):

1 > res = empty.graph(nodes = names(learning.test))

2 > modelstring(res) = "[A][C][F][B|A][D|A:C][E|B:F]"

or equivalently:

1 > res = model2network("[A][C][F][B|A][D|A:C][E|B:F]")

In the former case an empty network (i.e. a network with no arcs) is created with

empty.network and then modified; in the latter the network is created with the right

structure from the start.

We can also use either the arc set or the adjacency matrix of the graph to the same

effect.

1 > res2 = empty.graph(nodes = names(learning.test))

2 > arcs = matrix(c("A", "B", "A", "D", "C", "D", "B", "E",

3 + "F", "E"), ncol = 2, byrow = TRUE ,

4 + dimnames = list(NULL , c("from", "to")))

5 > arcs(res2) = arcs

6 > res3 = empty.graph(nodes = names(learning.test))

7 > amat = matrix(c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,

8 + 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,

9 + 0, 0, 0), byrow = TRUE , ncol = 6)

10 > amat(res3) = amat

All these approaches result in the same network structure. Furthermore, unless the

check.cycles argument is set to FALSE the network is guaranteed to be acyclic.

1 > all.equal(res , res2)

2 [1] TRUE

3 > all.equal(res , res3)

4 [1] TRUE

23

A

B

C

D

E

F

A

B

C

D

E

F

A

B C

DE

F
Figure 3.1: The network structure of learning.test, the PDAG representation of its equiva-
lence class and it moral graph.

The networks created above are stored in objects of class bn, which are specifically

designed to simplify and speed up common operations on Bayesian networks. The

structure of the network is stored using its arc set representation, which is easy to

manipulate and memory efficient; undirected arcs are stored as their two possible ori-

entations (so an arc A� B would be stored as tAÑ B, BÑ Au).
Once a network structure is stored in a bn object it can be manipulated and investi-

gated using the methods defined for this class. The most basic is the print function,

which produces the following output for the network created above.

1 > res

2

3 Random/Generated Bayesian network

4

5 model:

6 [A][C][F][B|A][D|A:C][E|B:F]

7 nodes: 6

8 arcs: 5

9 undirected arcs: 0

10 directed arcs: 5

11 average markov blanket size: 2.33

12 average neighbourhood size: 1.67

13 average branching factor: 0.83

14

15 generation algorithm: Empty

16

24

Further information on the network structure can be extracted from any bn object

with the following functions (function names are reported in parenthesis):

• whether the network is acyclic (acyclic) or completely directed (directed) and

if there is a path between two nodes (path);

• whether the network structure is equal to another one (all.equal) and, if not,

a detailed description of the differences (compare);

• the moral graph (moral), the skeleton (skeleton), the equivalence class (cpdag)

and the v-structures (vstructs) of the network;

• the labels of the nodes (nodes), of the root nodes (root.nodes), of the leaf nodes

(leaf.nodes) and the topological ordering of the network (node.ordering);

• the parents (parents), children (children), Markov blanket (mb), neighbourhood

(nbr), in-degree (in.degree), out-degree (out.degree) and degree (degree) of

each node;

• the directed arcs (directed.arcs), the undirected arcs (undirected.arcs), the

whole arc set (arcs) and it size (narcs);

• the adjacency matrix (amat) and the model string (modelstring) of the network;

• the number of parameters (nparams) associated with the network for a particular

data set and the number of tests or network scores computed in the learning of

the network (ntests).

The arcs, amat and modelstring functions can also be used in combination with

empty.graph to create a bn object with a specific structure from scratch, as shown

above. It is also possible to modify, drop or reverse single arcs with the set.arc,

drop.arc or reverse.arc respectively.

Combining these functions it is possible to investigate many of the properties of

Bayesian networks illustrated in Chapter 2. For example, it is easy to verify that

Markov blankets are indeed symmetric (as stated in Section 2.1).

1 > "C" %in% mb(res , "A")

2 [1] TRUE

3 > "A" %in% mb(res , "C")

4 [1] TRUE

25

The symmetry of neighbourhoods can be verified in the same way.

1 > "D" %in% nbr(res , "A")

2 [1] TRUE

3 > "A" %in% nbr(res , "D")

4 [1] TRUE

We can also check that the Markov blanket of a given node (A in this example) is indeed

composed by its children (chld), its parents (par) and its children’s other parents

(o.par).

1 > chld = children(res , "A")

2 > par = parents(res , "A")

3 > o.par = unlist(sapply(chld , parents , x = res))

4 > unique(c(chld , par , o.par[o.par != "A"]))

5 [1] "B" "D" "C"

6 > mb(res , "A")

7 [1] "B" "C" "D"

Finally, we can check that networks belonging to the same equivalence class have equiv-

alent probability decompositions. For example, we can see that altering the direction

of an arc (A � B) that is not compelled and is not part of a v-structure does not alter

the probability of the data (computed as log PpXq).

1 > res = set.arc(res , "A", "B")

2 > score(res , learning.test , type = "loglik")

3 [1] -23832.13

4 > res = set.arc(res , "B", "A")

5 > score(res , learning.test , type = "loglik")

6 [1] -23832.13

3.3 Learning a Bayesian Network

3.3.1 Fundamental Assumptions of Structure Learning Algorithms

All structure learning algorithms operate under a set of common assumptions:

• there must be a one-to-one correspondence between the nodes of the graph and

the random variables included in the model; this means in particular that there

must not be multiple nodes which are functions of a single variable.

26

• there must be no unobserved (also called latent or hidden) variables that are par-

ents of an observed node; otherwise only part of the dependency structure can

be observed, and the model is likely to include spurious arcs. Specific algorithms

have been developed for this particular case, typically based on Bayesian poste-

rior distributions or the EM algorithm (Dempster et al., 1977); see for example

Friedman (1997), Elidan and Friedman (2005) and Binder et al. (1997).

• all the relationships between the variables in the network must be conditional

independencies, because they are by definition the only ones that can be expressed

by graphical models.

• every combination of the possible values of the variables in X must represent

a valid, observable (even if really unlikely) event. This assumption implies a

strictly positive global distribution, which is needed to have uniquely determined

Markov blankets and, therefore, a uniquely identifiable model. Constraint-based

algorithms work even when this is not true, because the existence of a perfect

map is also a sufficient condition for the uniqueness of the Markov blankets (Pearl,

1988).

• observations must be stochastically independent. If some form of temporal or

spatial dependence is present it must be specifically accounted for in the definition

of the network, as in dynamic Bayesian networks (Koller and Friedman, 2009).

3.3.2 Choosing the Global and Local Distributions

In principle there are many possible choices for both the global and the local distri-

bution functions, depending on the nature of the data and the aims of the analysis.

However, literature have focused mostly on two cases:

• multinomial data (the so-called discrete case): both the global and the local distri-

butions are multinomial, and the latter are represented as conditional probability

tables (CPTs). This is by far the most common assumption, and the correspond-

ing Bayesian networks are usually referred to as discrete Bayesian networks (or

simply as Bayesian networks).

• multivariate normal data (the so-called continuous case): the global distribution

is multivariate normal, and the local distributions are normal random variables

linked by linear constraints. Local distributions are in fact linear models in which

the parents play the role of explanatory variables. These Bayesian networks are

27

label conditional independence test

mi Mutual Information
mi-sh Mutual Information (shrinkage estimator)
mc-mi Mutual Information (permutation test)
x2 Pearson’s X2

mc-x2 Pearson’s X2 (permutation test)

Table 3.1: Conditional independence tests for discrete data implemented in bnlearn.

called Gaussian Bayesian networks in Geiger and Heckerman (1994), Neapolitan

(2003) and most recent literature on the subject.

Other general distributional assumptions require ad-hoc learning algorithms or present

various limitations due to the difficulty of specifying the distribution functions in closed

form. For example many models for mixed data, such as the one presented in Bøttcher

and Dethlefsen (2003), do not allow a node associated with a continuous variable to be

the parent of a node associated with a discrete variable.

The choice of a particular set of global and local distributions determines which

conditional independence tests and which network scores can be used to learn the

structure of the Bayesian network.

Conditional independence tests and network scores for discrete data are functions

of the conditional probability tables implied by the graphical structure of the network

through the observed frequencies tnijk, i � 1, . . . , R, j � 1, . . . , C, k � 1, . . . , Lu for the

random variables X and Y and all the configurations of the conditioning variables Z.

Two common conditional independence tests are:

• mutual information: an information-theoretic distance measure (Cover and Thomas,

2006) defined as

MIpX,Y |Zq �
Ŗ

i�1

Ç

j�1

Ļ

k�1

nijk
n

log
nijkn��k
ni�kn�jk

. (3.2)

It is proportional to the log-likelihood ratio test G2 (they differ by a 2n factor,

where n is the sample size) and it is related to the deviance of the tested models.

• Pearson’s X2: the classic Pearson’s X2 test (Bishop et al., 2007) for contingency

28

label network score

k2 Cooper & Herskovits’ K2
bde Bayesian Dirichlet score equivalent (BDeu)
aic Akaike Information Criterion
bic Bayesian Information Criterion

loglik Log-Likelihood

Table 3.2: Network scores for discrete data implemented in bnlearn.

tables,

X2pX,Y |Zq �
Ŗ

i�1

Ç

j�1

Ļ

k�1

pnijk �mijkq2
mijk

, where mijk � ni�kn�jk
n��k

. (3.3)

In both cases the null hypothesis of independence can be tested using either the asymp-

totic χ2 distribution or the Monte Carlo permutation approach described in Edwards

(2000). Other choices include Fisher’s exact test (Bishop et al., 2007) and the shrinkage

estimator for the mutual information defined by Hausser and Strimmer (2009).

Network scores commonly found in literature are:

• the Bayesian Information Criterion (BIC), a penalized likelihood score defined

as

BIC pX |Gq �
ņ

i�1

log PXi pXi |ΠXiq �
d

2
log n (3.4)

where d is the number of parameters of the network. It is numerically equiva-

lent to the information-theoretic Minimum Description Length measure by Ris-

sanen (2007), even though it has a completely different derivation. BIC converges

asymptotically to the posterior density of the network (Schwarz, 1978).

• the Bayesian Dirichlet equivalent (BDe) score, the posterior density associated

with a uniform prior over both the space of the network structures and of the

parameters (Heckerman et al., 1995).

Both these score functions are said to be score equivalent, because they assign the same

score to networks belonging to the same equivalence class. They are also decomposable

into the components associated with each node, which is a significant computational

advantage when learning the structure of the network (only the relevant parts of the

score need to be recomputed at each iteration of the learning algorithm).

29

label conditional independence test

mi-g Mutual Information
mi-g-sh Mutual Information (shrinkage estimator)
mc-mi-g Mutual Information (permutation test)
cor Pearson’s Correlation

mc-cor Pearson’s Correlation (permutation test)
zf Fisher’s Z Test

mc-zf Fisher’s Z Test (permutation test)

Table 3.3: Conditional independence tests for multivariate Gaussian data implemented in
bnlearn.

In the continuous case conditional independence tests and network scores are func-

tions of the partial correlation coefficients ρXY |Z of X and Y given Z. Two common

conditional independence tests are:

• the exact Student’s t test (Hotelling, 1953) for Pearson’s correlation coefficient,

defined as

TpX,Y |Zq � ρXY |Z

d
n� 2

1� ρ2
XY |Z

. (3.5)

• Fisher’s Z test (Fisher, 1921), a transformation of the linear correlation coefficient

with an asymptotic normal distribution defined as

ZpX,Y |Zq �
a
n� |Z| � 3

2
log

1� ρXY |Z

1� ρXY |Z
. (3.6)

Both tests can also be performed using a Monte Carlo permutation approach such

as the ones described in Legendre (2000). Other possible choices are the mutual in-

formation test defined in Kullback (1968), which is proportional to the corresponding

log-likelihood ratio test, or the shrinkage estimators developed by Schäfer and Strimmer

(2005).

Commonly used network scores are again the Bayesian Information Criterion, this

time defined as

BIC pX |Gq �
ņ

i�1

log fXi pXi |ΠXiq �
d

2
log n (3.7)

and the Bayesian Gaussian equivalent (BGe) score, the Wishart posterior density of

the network (Geiger and Heckerman, 1994).

30

label network score

bge Bayesian Gaussian score equivalent (BGe)
loglik-g Log-Likelihood
aic-g Akaike Information Criterion (Gaussian)
bic-g Bayesian Information Criterion (Gaussian)

Table 3.4: Network scores for multivariate Gaussian data implemented in bnlearn.

3.3.3 Including Prior Information on the Data

Prior information on the data, such as the ones elicited from experts in the relevant

fields, can be integrated in all structure learning algorithms by means of the blacklist

and whitelist arguments. Both of these arguments accept a set of arcs which is

guaranteed to be either present (for the former) or missing (for the latter) from the

Bayesian network; any arc whitelisted and blacklisted at the same time is assumed to

be whitelisted, and is thus removed from the blacklist.

This combination represents a flexible way to describe an arbitrary set of assumptions

on the data, and is also able to deal with partially directed graphs:

• any arc whitelisted in both directions (i.e. both AÑ B and BÑ A are whitelisted)

is present in the graph, but the choice of its direction is left to the learning

algorithm. Therefore one of A Ñ B, B Ñ A and A � B is guaranteed to be in the

Bayesian network.

• any arc blacklisted in both directions, as well as the corresponding undirected arc,

is never present in the graph. Therefore if both AÑ B and BÑ A are blacklisted,

also A� B is considered blacklisted.

• any arc whitelisted in one of its possible directions (i.e. AÑ B is whitelisted, but

BÑ A is not) is guaranteed to be present in the graph in the specified direction.

This effectively amounts to blacklisting both the corresponding undirected arc

(A� B) and its reverse (BÑ A).

• any arc blacklisted in one of its possible directions (i.e. AÑ B is blacklisted, but

B Ñ A is not) is never present in the graph. The same holds for A � B, but not

for BÑ A.

31

label structure learning algorithm

gs Grow-Shrink (GS)
iamb Incremental Association (IAMB)

fast.iamb Fast Incremental Association (Fast-IAMB)
inter.iamb Interleaved Incremental Association (Inter-IAMB)

hc Hill-Climbing (HC)
tabu Tabu Search
mmhc Max-Min Hill-Climbing (MMHC)

rsmax2 General 2-Phase Restricted Maximization (RSMAX2)

Table 3.5: Bayesian network structure learning algorithms implemented in bnlearn and the
respective function names (also used as labels in the functions which take a structure learning
algorithm as an argument).

3.3.4 Learning the Structure of the Network

Structure learning algorithms are defined as general learning strategies, and as such

they do not require any assumption on the data. For example, the algorithms outlined

in Algorithms 2.1, 2.2 and 2.3 only refer to a generic conditional independence test and

a generic network score in the selection of the network. They are not even required to

be in closed form, even though this is preferable for reasons of computational efficiency.

Therefore, the choice of a structure learning algorithm is not influenced by the data

it will be applied to or by the choice of a particular combination of global and local

distributions.

bnlearn implements several structural learning algorithms, spanning all the three

classes covered in Section 2.2; a list is provided in Table 3.5. All of them return an

object of class bn, which can be used to learn the parameters of the network and to per-

form inference, and have several arguments to customize their behaviour. Commonly

used ones include test (the conditional independence test used in constraint-based

and hybrid algorithms), score (the network score used in score-based and hybrid al-

gorithms) and blacklist/whitelist. For a detailed explanation of all the arguments

of these functions we refer the reader to Scutari (2010a) and Scutari (2010b).

For example, the Grow-Shrink algorithm learns the following network from the

learning.test data.

1 > bn.gs = gs(learning.test)

2 > bn.gs

3

4 Bayesian network learned via Constraint -based methods

32

5

6 model:

7 [partially directed graph]

8 nodes: 6

9 arcs: 5

10 undirected arcs: 1

11 directed arcs: 4

12 average markov blanket size: 2.33

13 average neighbourhood size: 1.67

14 average branching factor: 0.67

15

16 learning algorithm: Grow -Shrink

17 conditional independence test:

18 Mutual Information (discrete)

19 alpha threshold: 0.05

20 tests used in the learning procedure: 43

21 optimized: TRUE

22

The algorithm is not able to determine the direction of all the arcs; not all of them are

compelled or part of a v-structure. However, we can see that bn.gs is identical to the

partially directed acyclic graph representing the equivalence class of true structure of

the network (see Figure 3.1).

1 > all.equal(cpdag(res), bn.gs)

2 [1] TRUE

Constraint-based algorithms and score-based algorithms making use of score-equivalent

network scores are not able to distinguish between equivalent networks, because they

have the same probability decomposition and encode the same conditional indepen-

dence statements. Therefore this is the best possible outcome we could have hoped

for from a structure learning algorithm: it correctly identifies the equivalence class the

true network belongs to.

Changing the conditional independence test (from the mutual information to Pear-

son’s X2) or the constraint-based learning algorithm (from Grow-Shrink to the Incre-

mental Association) does not alter the result.

1 > all.equal(cpdag(res), gs(learning.test , test = "x2"))

2 [1] TRUE

33

3 > all.equal(cpdag(res), iamb(learning.test))

4 [1] TRUE

5 > all.equal(cpdag(res), iamb(learning.test , test = "x2"))

6 [1] TRUE

The true network structure of learning.test can still be completely learned if we

have some prior information on the direction A� B, which is the only undirected arc in

bn.gs.

1 > undirected.arcs(bn.gs)

2 from to

3 [1,] "A" "B"

4 [2,] "B" "A"

In that case we can use the whitelist parameter to include this knowledge in the

structure learning process. If we whitelist A Ñ B, the alternative orientation of that

arc, BÑ A, is automatically blacklisted because they can’t both be present in the graph

at the same time.

1 > whitelist = matrix(c("A", "B"), ncol = 2)

2 > bn.gs2 = gs(learning.test , whitelist = whitelist)

3 > all.equal(res , bn.gs2)

4 [1] TRUE

5 > whitelist(bn.gs2)

6 from to

7 [1,] "A" "B"

8 > blacklist(bn.gs2)

9 from to

10 [1,] "B" "A"

On the other hand, score-based algorithms always return completely directed net-

works, even when using score-equivalent network scores. Consider for example the

network learned by the hill-climbing algorithm.

1 > bn.hc = hc(learning.test)

2 > bn.hc

3

4 Bayesian network learned via Score -based methods

5

6 model:

7 [A][C][F][B|A][D|A:C][E|B:F]

34

8 nodes: 6

9 arcs: 5

10 undirected arcs: 0

11 directed arcs: 5

12 average markov blanket size: 2.33

13 average neighbourhood size: 1.67

14 average branching factor: 0.83

15

16 learning algorithm: Hill -Climbing

17 score:

18 Bayesian Information Criterion

19 penalization coefficient: 4.258597

20 tests used in the learning procedure: 40

21 optimized: TRUE

22

The network described by bn.hc is identical to the true structure of the network.

However, if we start the hill-climbing search from a different network, such as the one

containing only the B Ñ A arc, we learn another network from the same equivalence

class (the one containing BÑ A instead of AÑ B).

1 > start = empty.graph(names(learning.test))

2 > start = set.arc(start , "B", "A")

3 > bn.hc2 = hc(learning.test , start = start)

4 > modelstring(bn.hc2)

5 [1] "[B][C][F][A|B][E|B:F][D|A:C]"

6 > all.equal(cpdag(bn.hc), cpdag(bn.hc2))

7 [1] TRUE

The reason of this behaviour is in the definition of the score-based algorithms them-

selves: they operate in the space of the network structures, and therefore they can only

learn elements of that space.

Hybrid algorithms work in a similar way, because they combine constraint-based

and score-based algorithms in a single learning procedure. For example, the Max-Min

Hill-Climbing algorithm is able to learn the true structure of the network correctly. All

arcs are directed, because the restrict phase uses the hill-climbing algorithm.

1 > bn.mmhc = mmhc(learning.test)

2 > all.equal(res , bn.mmhc)

3 [1] TRUE

35

As noted both in Friedman et al. (1999b) and Tsamardinos et al. (2006), there are

many possible choices for the restrict and maximize phases and their parameters. The

rsmax2 functions allows the user to specify any constraint-based algorithm for the

restrict phase (with the restrict argument) and any score-based algorithm for the

maximize phase (with the maximize argument).

1 > bn.rsmax2 = rsmax2(learning.test , restrict = "iamb",

2 + maximize = "tabu", test = "x2", score = "bde")

3 > all.equal(res , bn.rsmax2)

4 [1] TRUE

The conditional independence test and the network scores used by the above algorithms

can be specified with the test and score arguments, like in the original functions;

whitelist and blacklist are also supported. Additional arguments can be passed to

the learning algorithms specified by restrict and maximize either in the same way as

the original functions (for the former) or using the maximize.args argument (for the

latter).

3.3.5 Learning the Parameters

Once the network structure is known we can estimate the parameters of the local

distributions. Three possible approaches are:

• maximum likelihood estimation: this is the most common choice in literature.

In discrete networks the conditional probabilities for each node are estimated

with the respective relative frequencies; in continuous networks the regression

coefficients are estimated with the usual maximum likelihood estimates.

• Bayesian estimation: the local distribution of each node is combined with its

conjugate prior and its parameters are estimated from the resulting posterior

distribution. In discrete networks the conditional probabilities are estimated with

the pseudo-counts associated with the hyperparameters the posterior Dirichlet

distribution (Geiger and Heckerman, 1994). In continuous networks the normal-

Gamma and Laplace distributions have been used as prior distributions; the latter

is often preferred because it results in sparser networks (Koller and Friedman,

2009).

• regularized estimation: the parameters of each local distribution are estimated

penalizing values that would result in a non-smooth behaviour. These include

36

the shrinkage estimators from Hausser and Strimmer (2009) for discrete networks

and from Schäfer and Strimmer (2005) for continuous networks, and the graphical

lasso developed by Friedman et al. (2007).

Each of these choices has its own advantages and disadvantages. For example, maxi-

mum likelihood estimators are the simplest to compute. However, they require a large

sample size to produce reliable estimates. This is particularly evident in discrete net-

works, where we can get sparse conditional probability tables (i.e. with many zero

entries) even at moderate sample sizes. Bayesian and regularized estimators tend to

perform better in that regard, because they have a smoothing effect on the distribution

of the data. However, the choice of the weight of the prior distribution (for Bayesian es-

timators) and of the intensity of the regularization (for regularized estimators) present

their own sets of challenges.

bnlearn implements the maximum likelihood estimators for both discrete and con-

tinuous networks, and the Bayesian posterior estimator for discrete networks. These

are the three most common choices in literature. These estimators can be computed

using the bn.fit function.

1 > fitted = bn.fit(bn.hc , data = learning.test)

2 > fitted$E

3

4 Conditional probability table:

5

6 , , F = a

7

8 B

9 E a b c

10 a 0.8052498 0.2058824 0.1193738

11 b 0.0973751 0.1797386 0.1144814

12 c 0.0973751 0.6143791 0.7661448

13

14 , , F = b

15

16 B

17 E a b c

18 a 0.4005080 0.3167939 0.2375954

19 b 0.4902625 0.3664122 0.5066794

20 c 0.1092295 0.3167939 0.2557252

21

37

Bayesian estimators can be chosen by specifying method = "bayes"; by default the

parameters are estimated by maximum likelihood.

1 > fitted = bn.fit(bn.hc , learning.test , method = "bayes")

The equivalent or imaginary sample size, which expresses the confidence in the choice

of the (flat) prior, can be specified with the iss argument. It can be thought of as the

size of an imaginary sample supporting the prior distribution; so large values put more

weight on the prior at the expense of the information contained in the data.

Note that the network structure stored in the object of class bn passed to bn.fit

must be a directed acyclic graph; any undirected arc must be either dropped (with the

drop.arc function) or replaced with a directed one (with the set.arc function).

3.4 Performing Inference on a Bayesian Network

Inference on Bayesian networks includes a huge variety of techniques, based on differ-

ent approaches (frequentist, Bayesian, information-theoretic, etc.) and with different

objectives (estimation, prediction, model validation, etc.). For this reason it is not

possible to cover the applications of all these techniques in the space of this section.

Instead we will limit ourselves to three common approximate inference techniques im-

plemented in bnlearn: bootstrap (Efron and Tibshirani, 1993), cross-validation (Hastie

et al., 2009) and conditional probability queries (Koller and Friedman, 2009).

To illustrate these techniques we will use the hailfinder data set included in

bnlearn, which is generated from the reference network of the same name. Hail-

finder is a Bayesian network designed by Abramson et al. (1996) to forecast severe

summer hail in northeastern Colorado. It contains 20000 observations and 56 variables

describing a large set of environmental characteristics of the region.

3.4.1 Bootstrap

In the setting of Bayesian networks bootstrap is used to asses the properties of the

parameters of the network, as in Koller and Friedman (2009), or of its structure, as in

Friedman et al. (1999a). In both cases the aspects being investigated are usually the

expected value or the variance of some aspect of the Bayesian network.

For example, in Friedman et al. (1999a) the statistics of interest are the probabilities

associated with particular structural features of the network, such as the composition

of a Markov Blanket or the topological ordering of the nodes. They are computed as

38

Figure 3.2: Nonparametric bootstrap estimate for a feature of a Bayesian network.

follows:

1. For b � 1, 2, . . . , R

(a) re-sample a new data set X�
b from the original data X using either parametric

or nonparametric bootstrap.

(b) learn a Bayesian network Gb from X�
b.

2. Estimate the confidence in each feature f of interest as

P̂pfq � 1

R

Ŗ

b�1

fpGbq. (3.8)

In the case of structural features, f is either a simple indicator function (which is equal

to 1 if the structural feature is present in the network Gb and 0 otherwise), or a counter

(the absolute frequency of the structural feature in the graph).

We may be interested, for example, in the ability of the hill-climbing algorithm to

learn a sparse network from the hailfinder data. Sparse networks have several good

properties that make them useful in analyzing real world data: they are easier to

interpret and most inference procedures are computationally tractable. The easiest

way to assess whether a network is sparse is to count its arcs and then to compare that

number to the number of nodes.

39

1 > sparse = bn.boot(hailfinder , algorithm = "hc",

2 + R = 200, statistic = narcs)

3 > summary(unlist(sparse))

4 Min. 1st Qu. Median Mean 3rd Qu. Max.

5 63.00 64.00 65.00 64.69 65.00 67.00

6 > quantile(unlist(sparse), c(0.05, 0.95))

7 5% 95%

8 64 66

hailfinder has 56 nodes, so with 65 arcs it can be considered sparse. Furthermore,

we can see that the bootstrap estimate has a very low variance because the boundaries

of the 95% confidence interval are very close to the mean value. This is in part due to

the large sample size of hailfinder (20000 observations) compared to the number of

parameters (1768) of the network learned by the hill-climbing algorithm.

3.4.2 Cross-Validation

Cross-validation is probably the simplest and most widely used method in model

validation to assess how the results of a statistical analysis will generalize to an in-

dependent data set. It has been applied to many classes of models, from regression

to classification, to estimate the appropriate loss functions (such as the classification

error or the likelihood loss).

Bayesian network learning algorithms are not explicitly targeted at classification

problems; they seek to minimize the discrepancy between the estimated and the true

dependence structure instead of the classification error. Furthermore, the very concept

of a target variable (which is central in classification) is alien to Bayesian networks,

which treat all the variables in the same way. Still there are some situations in which

the classification error, estimated with the prediction error, may be of interest. For

example, the Hailfinder network was designed to forecast severe summer hail in north-

eastern Colorado. In fact, some of the variables in the network (the ones with the

names ending in Fcst) represent the weather conditions in different parts of the region,

and the prediction of their values was the main goal of the original work by Abramson

et al. (1996). If we take CompPlFcst (Complete Plains Forecast), we can see that even

the Max-Min Hill-Climbing algorithm is not a very good classifier.

1 > bn.cv(hailfinder , ’mmhc’, loss = "pred",

2 + loss.args = list(target = "CompPlFcst"))

3

40

Figure 3.3: K-fold cross validation estimation of a loss function for a Bayesian network learning
algorithm.

4 k-fold cross -validation for Bayesian networks

5

6 target learning algorithm: Max -Min Hill -Climbing

7 number of subsets: 10

8 loss function: Classification Error

9 expected loss: 0.5433

Hill-climbing and tabu search have comparable error rates (50.67% and 50.4%, respec-

tively).

Cross-validation can also be used to evaluate a pre-determined network structure;

in this case only the parameters are learned from the cross-validation samples. An

example is the naive Bayes classifier, which is equivalent to a star-shaped Bayesian

network with the training variable at the center and all the arcs pointing to the training

variable (we refer the reader to Borgelt et al. (2009) for an introduction to this model).

Naive Bayes classifiers are considered to be very good classifiers; indeed they apparently

have a negligible classification error rate for this data set.

1 > naive = naive.bayes(training = "CompPlFcst",

2 + data = hailfinder)

3 > bn.cv(hailfinder , naive , loss = "pred")

4

5 k-fold cross -validation for Bayesian networks

41

6

7 target network structure:

8 [Naive Bayes Classifier]

9 number of subsets: 10

10 loss function: Classification Error

11 training node: CompPlFcst

12 expected loss: 0

3.4.3 Conditional Probability Queries

Conditional probability queries focus on the most common problem in the inference

on the Bayesian networks: assessing the influence of the evidence e we have collected

from some new data on the value y a variable of interest Y . The obvious measure for

this quantity is the conditional probability

P pY � y |E � eq � P pY � y, E � eq
P pE � eq , (3.9)

which can be estimated in a number of ways (Korb and Nicholson, 2004; Koller and

Friedman, 2009). The simplest one is called logic or forward sampling ; it is a form

of rejection sampling. A large number m of independent random observations are

generated from the Bayesian network; then the proportion that satisfies the condition

E � e is used to estimate P pE � eq and the proportion that also satisfies Y � y is

used to estimate P pY � y, E � eq. The resulting estimator is

P̂ pY � y |E � eq �
°m
i�1 I pYi � y, Ei � eq°m

i�1 I pEi � eq . (3.10)

We can consider, for example, how the knowledge that the wind is blowing from

east/north-east in the plains (WindFieldPln == "E NE") affects the the probability

that the wind is blowing towards the west in the mountains (WindFieldMt ==

"Westerly"). To investigate it we generate 107 observations from the Bayesian network

learned from hailfinder by the Max-Min Hill-Climbing algorithm.

1 > fitted = bn.fit(mmhc(hailfinder), hailfinder)

2 > cpquery(fitted , (WindFieldMt == "Westerly"),

3 + (WindFieldPln == "E_NE"), n = 10^7)

4 [1] 0.4136172

5 > n = nrow(hailfinder)

42

6 > summary(hailfinder[, "WindFieldMt"]) / n

7 LVorOther Westerly

8 0.47615 0.52385

Obviously, the conditional probability is lower than the marginal one because the plains

and the mountains are adjacent, so the wind can’t change in direction by that much so

suddenly.

Conditional distributions can be approximated by their empirical counterparts in a

similar way. We can consider, for example, how the knowledge that there is a weather

instability in the mountains (InsInMt == "Strong") and that there is a marked cloud

shading (CldShadeConv == "Marked") influences the forecast for the plains.

1 > n = nrow(hailfinder)

2 > summary(hailfinder[, "CompPlFcst"]) / n

3 DecCapIncIns IncCapDecIns LittleChange

4 0.22810 0.41205 0.35985

5 > cp = cpdist(fitted , nodes = "CompPlFcst",

6 + (InsInMt == "Strong") & (CldShadeConv == "Marked"),

7 + n = 10^7)

8 > n = nrow(cp)

9 > summary(cp[, CompPlFcst]) / n

10 DecCapIncIns IncCapDecIns LittleChange

11 0.1888219 0.4812025 0.3299755

The three levels of CompPlFcst stand for decreased instability (DecCapIncIns), in-

creased instability (IncCapDecIns) and little change (LittleChange). The conditional

distribution shows an increased probability of the weather worsening (�6.9%) com-

pared to the marginal one, which suggests that bad weather tends to spill from the

mountains into the plains. This trend is confirmed by the decreased probability of

DecCapIncIns (�3.9%) and LittleChange (�2.9%).

3.5 Parallel Structure Learning for Bayesian Networks

It is well known from literature that the problem of learning the structure of Bayesian

networks is very hard to tackle. Its computational complexity, measured with the num-

ber of model comparisons (either through conditional independence tests or network

scores), is exponential in the number of nodes in the worst case and polynomial in most

real-world situations (Chickering, 1996). Furthermore, the computational complexity

43

of the conditional independence tests and the network scores themselves must be taken

into account; in most cases it is linear in the sample size.

Therefore the performance boost provided by a parallel implementation is really wel-

come, especially when a large number of variables is involved in the analysis. bnlearn

provides such an implementation for several structure learning algorithms using the

functionality provided by the snow package. Learning algorithms are split into several

parts which are then executed concurrently by several slave processes, started in the

background and managed by snow as a single cluster. snow also manages the com-

munications between the master process (i.e. the one controlled by the user) and the

slaves, so both data and R commands are copied back and forth transparently.

3.5.1 Constraint-based Algorithms

Constraint-based algorithms display a coarse-grained parallelism, because they only

need to synchronize their parts a couple of times. If we examine again Algorithm 2.1

we can see that:

1. the first step is embarrassingly parallel, as each d-separating set can be learned

independently from the other ones. Another solution is to split this step in

one part for each node, which will learn all the d-separating sets involving that

particular node. The former approach can take advantage of a greater number of

processors, while the latter has less overhead due to the smaller number of parts

running in parallel;

2. the same holds for the second step. Once all the d-separating sets are known, it

is embarrassingly parallel and can be split in the same way as the first step;

3. the third step is sequential, because each of its iterations requires the status of

the previous one.

So the only two points in which the status of the various parts has to be collected is

between the first and the second step and between the second and the third step.

Most modern constraint-based algorithms, which learn the Markov blankets of the

nodes as an intermediate step, require an additional synchronization. For example, if

we consider the Grow-Shrink algorithm as shown in Figure 3.4 we can see that:

1. each Markov blanket can be computed independently from the others;

2. each neighbourhood is a subset of the corresponding Markov blanket and therefore

can be learned independently from the other ones. However, the consistency of

44

Markov
blankets

neighborhood
sets

v-structures

direction
propagation

Figure 3.4: Parallel implementation of the Grow-Shrink algorithm present in bnlearn.

the Markov blankets must be checked before learning neighbourhood sets; due

to errors in the conditional independence tests they may not be symmetric. A

solution to this problem is to examine all pairs of nodes and remove them form

each other’s Markov blanket if they do not appear in both of them;

3. given the Markov blankets and the neighbourhood sets, the v-structures centered

on a particular node (i.e. the one with the converging arcs) can again be com-

puted in parallel. As in the previous step, the consistency of the neighbourhood

sets must be checked and any departure from symmetry must be fixed before

identifying the v-structures.

Furthermore, the final step of the Grow-Shrink algorithm (in which the directions of

the compelled arcs are learned) also displays a fine-grained parallelism (i.e. the status

of the slaves requires several synchronizations per second). The order in which arcs

are considered in that step depends on the topology of the graph; undirected arcs

whose orientations would result in the greatest number of cycles are considered first.

That number can be computed in parallel for each arc, at the cost of introducing some

overhead.

We will now examine the practical implications of parallelizing a constraint-based

learning algorithm, starting with a simple cluster with two slave processes. For this

task we will use again the hailfinder data, which is large enough to properly highlight

the improvements resulting from parallel computing.

45

1 > library(snow)

2 > cl <- makeCluster (2, type = "MPI")

3 2 slaves are spawned successfully. 0 failed.

4 > res = gs(hailfinder , cluster = cl)

5 > unlist(clusterEvalQ(cl , .test.counter))

6 [1] 2698 3765

7 > .test.counter

8 [1] 4

9 > stopCluster(cl)

We can see from the output of clusterEvalQ that the first slave process performed

2698 (41.71%) conditional tests, the second one 3765 (58.21%) and that only 4 tests

were performed by the master process. The difference in the number of tests between

the two slaves is due to the topology of the network; different nodes have Markov

blankets and neighbourhood sets of different sizes, and require different numbers of

tests.

Increasing the number of slave processes reduces the number of tests performed by

each slave, further increasing the overall performance of the algorithm.

1 > cl <- makeCluster (3, type = "MPI")

2 3 slaves are spawned successfully. 0 failed.

3 > res = gs(hailfinder , cluster = cl)

4 > unlist(clusterEvalQ(cl , .test.counter))

5 [1] 1667 2198 2598

6 > stopCluster(cl)

7 > cl <- makeCluster (4, type = "MPI")

8 4 slaves are spawned successfully. 0 failed.

9 > res = gs(hailfinder , cluster = cl)

10 > unlist(clusterEvalQ(cl , .test.counter))

11 [1] 1116 1582 1860 1905

12 > stopCluster(cl)

The execution times of the Grow-Shrink algorithm for clusters of 2, 3, 4, 5 and 6 slaves

are reported in Figure 3.5. It is clear from the figure that the gains in execution time fol-

low the law of diminishing returns – i.e. adding more slave processes produces less and

less improvements, up to the point where the increased overhead of the communications

between the master and the slave processes starts actually degrading performance.

Another important consideration is whether the data set we are learning the network

from is actually big enough (both in the number of observations and nodes) to make

46

number of slaves

se
co

nd
s

6

8

10

12

14

1 2 3 4 5 6

●

●

●

●
●

●

Figure 3.5: Performance of the Grow-Shrink algorithm for different numbers of slave processes,
measured by its execution time (in seconds).

the use of the parallel implementation of a learning algorithm worthwhile. In fact,

for hailfinder the traditional implementation of the Grow-Shrink algorithm is faster

than the parallel one.

1 > system.time(gs(hailfinder))

2 user system elapsed

3 4.000 0.004 4.004

There are three reasons for this disparity. First, the parallel implementation can not

take advantage of the symmetry of the Markov blankets and the neighbourhood sets to

reduce the number of tests. Both the Markov blanket and neighbourhood of each node

are learned at the same time, so we do not know which nodes are part of the other

ones. This more than doubles the number of conditional independence tests required

by the algorithm.

1 > ntests(gs(hailfinder , optimized = TRUE))

2 [1] 2670

3 > ntests(gs(hailfinder , optimized = FALSE))

4 [1] 6467

Second, tests are almost never split in an optimal way among the slave processes.

This can be seen quite clearly from the examples illustrated in this section: with 4

slaves the number of tests assigned to each of them range from 1116 (17.25% of the

total) to 1905 (29.45% of the total). This variability introduces additional overhead in

47

the algorithm, because faster slaves (the ones that have fewer tests to perform) must

wait for slower ones each time the status of the cluster has to be synchronized.

Third, passing data back and forth between the master and the slaves also takes

some time. This is particularly relevant when the master and the slaves are separate

processes (as opposed to separate threads within the same process), because in this case

data have to be copied around multiple times instead of having a single copy of the data

for all the slaves. The efficiency of such an operation depends on the operating system

and the hardware the cluster is running on, so it must be evaluated on a case-by-case

basis.

3.5.2 Score-based Algorithms

Score-based learning algorithms, being based on general-purpose optimization heuris-

tics, benefit from several decades of research efforts aimed at taking advantage of the

benefits offered by parallel computing (Rauber and Rünger, 2010).

Most score-based algorithm are inherently sequential in nature. Consider for example

hill-climbing. In each iteration the state of the previous iteration is used as the starting

point for the search of a new, better network structure. This is also true for tabu search

and genetic algorithms, and makes the parallel implementation of these algorithms a

challenging problem.

One possible solution is to provide a parallel implementation of the computations

performed within a single iteration and to let the master process execute the iterations

in a sequential way, synchronizing the status of the slaves each time. This would

reduce a sequential problem to a fine-grained parallel one; it is known as the move

acceleration model (if each slave computes part of the score of each candidate network)

or the parallel moves model (if each slave manages some of the candidate networks).

However, the resulting performance gain is likely to be outweighed by the overhead of

the communications between the slaves and the master process.

Another solution, called the parallel multistart model, consists in starting several

instances of the score-based algorithm from different starting networks. The use of

significantly different starting points for the search improves the algorithm’s ability to

cover the search space and results in better and more robust solutions. For example,

even if one of the instances gets stuck on a local maximum, another one may still find

the global maximum and in this case the suboptimal solution is simply discarded.

We can easily implement the parallel multistart model using the functions provided

in bnlearn. First, we need to generate the starting point for the search instances.

48

Figure 3.6: Parallel multistart implementation of a score-based learning algorithm.

Unless we have some prior knowledge about the structure of the network we can just

generate them at random.

1 > r = random.graph(names(hailfinder), num = 4,

2 + method = "melancon")

Then we can start the snow cluster and have each slave perform a hill-climbing search

using one of the network we just generated.

1 > cl = makeCluster (4, type = "MPI")

2 > clusterEvalQ(cl , library(bnlearn))

3 > parallel.multistart = function(start) {

4 + hc(hailfinder , start = start)

5 + }

6 > l = parLapply(cl , r, parallel.multistart)

Once all slave processes have completed their searches, we can examine the scores of

the network structures they returned.

1 > unlist(lapply(l, score , data = hailfinder))

2 [1] -992833.1 -993954.7 -990474.8 -1011764

The best one is the third (�990474.8); the other ones correspond to local maxima.

49

Tabu search can be easily modified in the same way, and with similar results.

1 > parallel.multistart = function(start) {

2 + tabu(hailfinder , start = start)

3 + }

4 > l = parLapply(cl , r, parallel.multistart)

5 > unlist(lapply(l, score , data = hailfinder))

6 [1] -990474.8 -997597.7 -991934 -993547.3

It is important to note that the execution time of the structure learning is not reduced

by the parallel multistart, because each of the instances executed by the slaves processes

takes (on average) as much time as the original score-based algorithm.

1 > r0 = random.graph(names(hailfinder),

2 + method = "melancon")

3 > system.time(tabu(hailfinder , start = r0))

4 user system elapsed

5 414.130 0.000 414.137

6 > system.time(parLapply(cl , r, parallel.multistart))

7 user system elapsed

8 0.020 0.010 432.221

3.5.3 Hybrid Algorithms

The advantages that parallel computing can bring to hybrid algorithms depend on

the exact implementation of the restrict and maximize phases.

The restrict phase is usually implemented using the first two steps of a constraint-

based algorithm or using another local search algorithm. Some examples of the latter are

the simple ones proposed in Friedman et al. (1999b) for the Sparse Candidate algorithm

or the ones, such as the ARACNE algorithm (Margolin et al., 2006), investigated in

Meloni et al. (2009). Therefore all the considerations we made in Section 3.5.1 apply.

The maximize phase is usually implemented using a score-based learning algorithm.

The computational cost of this phase is reduced by the constraints learned in the restrict

phase, which enforce the sparseness of the network structure. This in turn guarantees a

reasonable performance for most real-world data sets. All the considerations we made

in Section 3.5.2 still apply; for example we can still implement the multistart model if

we take care to select starting networks that satisfy the constraints.

50

Chapter 4

Multivariate Discrete

Distributions in Structure

Modelling

In this chapter we will introduce the multivariate Bernoulli and multivariate Tri-

nomial distributions, which will provide the theoretical foundations for the variability

measures defined in Chapter 5. We will also derive some properties related to their

first and second order moments using results from probability and graph theory.

4.1 Modelling Graphical Structures

The network structure encodes a significant part of the information provided by

a Bayesian network; it provides a simple, qualitative description of the relationships

among the variables in X. These relationships may even be the main interest of the

analysis. This is often the case, for example, when learning Bayesian networks as causal

graphical models under the assumptions detailed in Section 2.3.

For these reasons it is important to provide a full probabilistic model for the structure

of a Bayesian network, so that we can define proper descriptive statistics and inference

procedures. Of particular interest are measures of confidence and variability. The

former provide a measure of the probability that a particular structural feature, such

as a particular arc or the composition of a Markov blanket, may be the result of the

real dependency structure of the data instead of being an artifact produced by the

noisiness of the data. The latter measure how much a network structure is stable, and

how each part contributes to the variability of the network as a whole.

51

Confidence measures have been developed by Friedman et al. (1999a) using bootstrap

resampling, and later modified by Imoto et al. (2002) to estimate the marginal confi-

dence in the presence of an arc (called edge intensity, and also known as arc strength)

and its direction. Their approach can be summarized as follows:

1. For b � 1, 2, . . . ,m

(a) sample a new data set X�
b from the original data X using either parametric

or nonparametric bootstrap.

(b) learn a Bayesian network Gb � pV, Abq from X�
b .

2. Estimate the confidence in each feature f of interest as

P̂pfq � 1

m

m̧

b�1

fpGbq. (4.1)

However, the empirical probabilities P̂pfq are difficult to evaluate, because the distri-

bution of G in the space of DAGs is unknown and because the confidence threshold

value is an unknown function of both the data and the structure learning algorithm.

These limitations have severely limited the usefulness of the approach proposed by

Friedman et al. (1999a), and have thus far prevented the development of effective mea-

sures of variability. In most cases Bayesian network structure learning algorithms are

still studied using a small number of well-known reference data sets as benchmarks; a

collection is maintained by Elidan (2001) in the Bayesian Network Repository. Differ-

ences from the true structure of these networks, which are known from literature, are

measured with descriptive measures such as Hamming distance (Jungnickel, 2008) or

the Structural Hamming Distance (Tsamardinos et al., 2006). As for Bayesian networks

learned from real-world data, this approach to model validation is clearly not possible.

Confidence is studied using pre-defined significance thresholds (a data-driven approach

has been proposed by Nagarajan et al. (2010) and is currently being improved) and

variability is usually not investigated at all.

Better solutions are possible once a probability distribution for the network structure

is defined. We will first note that in the context of graphical models a network is

uniquely identified by its arc set A (or by its edge set E in the case of undirected

graphs), and that each arc or edge is uniquely identified by the nodes Xi and Xj , i � j

it is incident on.

52

Furthermore, an edge or an arc has only few possible states:

• an edge eij can be either present (tXi �Xju P E) or missing from an undirected

graph (tXi �Xju R E);

• in a directed graph and arc aij can be present in one of its two possible orientations

(tXi Ñ Xju P A or tXj Ñ Xiu P A) or missing from the graph (tXi Ñ Xju R A
and tXj Ñ Xiu R A).

This leads to the natural choice of a Bernoulli random variable for the first case,

eij � Eij �
#

1 eij P E with probability pij

0 eij R E with probability 1� pij
, (4.2)

and to the choice of a Trinomial random variable for the second case,

aij � Aij �

$''&
''%
�1 ÐÝaji P A with probability ÐÝpij

0 ÐÝaij ,ÝÑaij R A with probability p̊ij

1 ÝÑaij P A with probability ÝÑpij
, (4.3)

where ÝÑaij is tXi Ñ Xju and ÐÝaij is tXj Ñ Xiu. Therefore a network structure can be

modelled through its arc or edge set as follows:

• undirected graphs, such as Markov networks or the skeleton and the moral graph

of Bayesian networks, can be modelled by a multivariate Bernoulli random vari-

able.

• directed graphs, such as the directed acyclic graphs used in Bayesian networks,

can be modelled by a multivariate Trinomial random variable.

Formal definitions and properties of these distributions will be covered in detail in

Section 4.2 and Section 4.3.

In addition to being the natural choice for a graphical structure, multivariate Bernoulli

and Trinomial distributions are able to integrate smoothly with and extend the ap-

proaches presented above. The probabilities associated with each arc or edge corre-

spond to the confidence from Friedman et al. (1999a) and the arc strength from Imoto

et al. (2002), and can be estimated using bootstrap as in Equation 4.1. Distance and

variability measures can be constructed from the first and second order moments of

the multivariate distributions, providing statistically motivated descriptive measures

53

and hypothesis testing. Some examples of both will be introduced in Chapter 5 for

variability measures.

The choice of bootstrap as an estimation technique is motivated by two considera-

tions. First, the true structure of the network and its distribution are both unknown,

and cannot be estimated from the real-world data in closed form. Therefore some kind

of nonparametric approach, such as bootstrap, is required. Another option is Markov

Chain Monte Carlo (MCMC) simulations (Friedman and Koller, 2003), but they are

computationally expensive and convergence is problematic with large number of vari-

ables (Koller and Friedman, 2009). Second, bootstrap greatly simplifies the analysis of

variability and its interpretation; network structures learned from the bootstrap sam-

ples are independent, which makes the estimation of second order moments straightfor-

ward (this is not true for networks obtained from MCMC simulations). Furthermore,

as far as the the second order moments are concerned, the outcome of bootstrap esti-

mation can be summarized in three cases according to the entropy (Cover and Thomas,

2006) of the set of the learned networks:

• minimum entropy : all the networks learned from the bootstrap samples have the

same structure, that is

E1 � E2 � . . . � Em � E or A1 � A2 � . . . � Am � A. (4.4)

This is the best possible outcome of the resampling, because there is no variability

in the estimated network structure.

• intermediate entropy : several network structures are observed with different fre-

quencies mb,
°
mb � m. This is the case for almost all real-world data.

• maximum entropy : all possible network structures appear with the same fre-

quency, that is

PpUq � c or PpGq � c for every possible U and G. (4.5)

This is the worst possible outcome. In fact, this case corresponds to the non-

informative prior distribution on the space of network structures used in comput-

ing the BDe and BGe network scores.

The values assumed by the first and second order moments and the related parameters

of the multivariate Bernoulli and Trinomial distributions will be derived for these three

cases in Section 4.4.

54

4.2 The Multivariate Bernoulli Distribution

Let B1, B2, . . . , Bk, k P N be Bernoulli random variables with marginal probabil-

ity of success p1, p2, . . . , pk, that is Bi � Berppiq, i � 1, . . . , k. Then the distribu-

tion of the random vector B � rB1, B2, . . . , BksT over the joint probability space of

B1, B2, . . . , Bk is a multivariate Bernoulli random variable (Krummenauer, 1998b), de-

noted as Berkppq. Its probability function is uniquely identified by the parameter

collection

p � tpI : I � t1, . . . , ku, I � ∅u , (4.6)

which represents the dependence structure among the marginal distributions in terms of

simultaneous successes for every non-empty subset I of elements of the random vector.

However, several useful results depend only on the first and second order moments

of B,

EpBiq � pi, VARpBiq � pi � p2
i and COVpBi, Bjq � pij � pipj , (4.7)

and the corresponding reduced parameter collection

p̃ � tpij : i, j � 1, . . . , ku , (4.8)

which is in fact used as an approximation of p in the generation random multivariate

Bernoulli vectors in Krummenauer (1998a).

4.2.1 Uncorrelation and Independence

We will first consider a simple result that links covariance and independence of two

univariate Bernoulli variables.

Theorem 4.1. Let Bi and Bj be two Bernoulli random variables. Then Bi and Bj

are independent if and only if their covariance is zero:

Bi KK Bj ðñ COVpBi, Bjq � 0 (4.9)

Proof. If Bi and Bj are independent then by definition

COVpBi, Bjq � pij � pipj � PpBi � 1, Bj � 1q � PpBi � 1qPpBj � 1q � 0, (4.10)

as PpBi � 1, Bj � 1q � PpBi � 1qPpBj � 1q.

55

If, on the other hand, we have that COVpBi, Bjq � 0, then

pij � pipj � 0 ñ pij � pipj ñ Bi KK Bj (4.11)

which completes the proof.

This theorem can be extended to multivariate Bernoulli random variables as follows.

Theorem 4.2. Let B � rB1, B2, . . . , BksT and C � rC1, C2, . . . , ClsT , k, l P N be two

multivariate Bernoulli random variables. Then B and C are independent if and only

if

B KK C ðñ COVpB,Cq � O (4.12)

where O is the zero matrix.

Proof. If B is independent from C, then by definition every pair pBi, Cjq, i � 1, . . . , k,

j � 1, . . . , l is independent. Therefore the covariance matrix of B and C is

COVpBi, Cjq � cij � 0 ùñ COVpB,Cq � rcijs � O. (4.13)

If conversely the covariance matrix COVpB,Cq is equal to the zero matrix, every pair

pBi, Cjq is independent as

cij � pij � pipj � 0 ùñ pij � pipj (4.14)

This implies the independence of the random vectors B and C, as their sigma-algebras

σpBq � σpB1q � . . .� σpBkq and σpCq � σpC1q � . . .� σpClq (4.15)

are functions of the sigma algebras induced by the two sets of independent random

variables B1, B2, . . . , Bk and C1, C2, . . . , Cl.

The correspondence between uncorrelation and independence is identical to the anal-

ogous property of the multivariate Gaussian distribution (Ash, 2000), and is closely

related to the strong normality defined for orthogonal second order random variables

in Loève (1977). It can also be applied to disjoint subsets of components of a single

multivariate Bernoulli variable, as they are also distributed as multivariate Bernoulli

random variables.

56

Theorem 4.3. Let B � rB1, B2, . . . , BksT be a multivariate Bernoulli random variable;

then every random vector B� � rBi1 , Bi2 , . . . , BilsT , ti1, i2, . . . , ilu � t1, 2, . . . , ku is a

multivariate Bernoulli random variable.

Proof. The marginal components of B� are Bernoulli random variables, because B is

multivariate Bernoulli. The new dependency structure is defined as

p� � tpI� : I� � ti1, . . . , ilu � t1, . . . , ku, I� � ∅u , (4.16)

and uniquely identifies the probability distribution of B�.

Example 4.1. Consider the trivariate Bernoulli random variable

B �

�
��
B1

B2

B3

�
�� � B1 �B2 where B1 �

�
��

0

B2

0

�
�� and B2 �

�
��
B1

0

B3

�
�� . (4.17)

Then the covariance matrix

COVpB1,B2q � E

�
��
�
��

0

B2

0

�
���

B1 0 B3

���
� E

�
��
�
��

0

B2

0

�
��
�
�
E

��
B1 0 B3

�	
(4.18)

� E

�
��
�
��

0 0 0

B1B2 0 B2B3

0 0 0

�
��
�
�
�

�
��

0

p2

0

�
���

p1 0 p3

�
(4.19)

�

�
��

0 0 0

p12 0 p23

0 0 0

�
���

�
��

0 0 0

p1p2 0 p2p3

0 0 0

�
�� � (4.20)

�

�
��

0 0 0

p12 � p1p2 0 p23 � p2p3

0 0 0

�
�� (4.21)

of the two components B1 and B2 is equal to the zero matrix if and only if

#
p12 � p1p2

p23 � p2p3

ùñ tB1 KK B2, B2 KK B3u (4.22)

which in turn implies and is implied by B1 KK B2.

57

4.2.2 Properties of the Covariance Matrix

The covariance matrix Σ � rσijs, i, j � 1, . . . , k associated with a multivariate

Bernoulli random vector has some interesting numerical properties. Due to the form

of the central second order moments reported in Equation 4.7, the diagonal elements

are bounded in the interval

σii � pi � p2
i P

�
0,

1

4

�
. (4.23)

The maximum is attained for pi � 1
2 , and the minimum for both pi � 0 and pi � 1.

For the Cauchy-Schwarz theorem then

0 ¤ σ2
ij ¤ σiiσjj ¤ 1

16
ùñ |σij | P

�
0,

1

4

�
. (4.24)

The eigenvalues λ1, λ2, . . . , λk of Σ are similarly bounded, as shown in the following

theorem.

Theorem 4.4. Let B � rB1, B2, . . . , BksT be a multivariate Bernoulli random variable,

and let Σ � rσijs, i, j � 1, . . . , k be its covariance matrix. Let λi, i � 1, . . . , k be the

eigenvalues of Σ. Then

0 ¤
ķ

i�1

λi ¤ k

4
and 0 ¤ λi ¤ k

4
. (4.25)

Proof. Since Σ is a real, symmetric, non-negative definite matrix, the eigenvalues λi

are non-negative real numbers (Seber, 2008); this proves the lower bound in both

inequalities.

The upper bound in the first inequality holds because

ķ

i�1

λi �
ķ

i�1

σii ¤ max
tσiiu

ķ

i�1

σii �
ķ

i�1

maxσii � k

4
, (4.26)

as the sum of the eigenvalues is equal to the trace of Σ. This in turn implies

λi ¤
ķ

i�1

λi ¤ k

4
, (4.27)

which completes the proof.

58

These bounds define a convex set in Rk, defined by the family

D �
"

∆k�1pcq : c P
�
0,
k

4

�*
(4.28)

where ∆k�1pcq is the non-standard k � 1 simplex

∆k�1pcq �
#
pλ1, . . . , λkq P Rk :

ķ

i�1

λi � c, λi ¥ 0

+
. (4.29)

4.2.3 Sequences of Multivariate Bernoulli Variables

We will now consider a sequence of independent and identically distributed multi-

variate Bernoulli variables B1,B2, . . . ,Bm � Berkppq. The sum

Sm �
m̧

i�1

Bi � Bikpm,pq (4.30)

is distributed as a multivariate Binomial random variable (Krummenauer, 1998b), thus

preserving one of the fundamental properties of the univariate Bernoulli distribution.

A similar result holds for the law of small numbers (Billingsley, 1995), whose multi-

variate version states that a k-variate Binomial distribution Bikpm,pq converges to a

multivariate Poisson distribution PkpΛq:

Sm
dÑ PkpΛq as mp Ñ Λ. (4.31)

Both these distributions’ probability functions, while tractable, are not very useful as

a basis for closed-form inference procedures. An alternative is given by the asymptotic

multivariate Gaussian distribution defined by the multivariate central limit theorem

(Ash, 2000):
Sm �mEpB1q?

m
dÑ Nkp0,Σq. (4.32)

The limiting distribution is guaranteed to exist for all possible values of p, as the first

two orders of moments are bounded and therefore are always finite.

4.3 The Multivariate Trinomial Distribution

The multivariate Trinomial distribution is the multivariate extension of the univariate

Trinomial distribution, and its construction is similar to the multivariate Bernoulli.

59

They are both particular cases of the multivariate Multinomial distribution (Wishart,

1949; Johnson et al., 1997), and for this reason they share many common traits.

Let T1, T2, . . . , Tk, k P N be Trinomial random variables assuming values ti1, ti2 and

ti3, i � 1, . . . , k and denoted as Ti � Tri
�
pipti1q, pipti2q, pipti3q

�
, where

PpTi � ti1q � pipti1q, PpTi � ti2q � pipti2q and PpTi � ti3q � pipti3q (4.33)

with pipti1q � pipti2q � pipti3q � 1. Then the distribution of the random vector T �
rT1, T2, . . . , TksT over the joint probability space of T1, T2, . . . , Tk is a multivariate

Trinomial random variable, denoted as Trikppq. The parameter collection p which

uniquely identifies the distribution is

p �
$&
%pIpT q : I � t1, . . . , ku, T P

|I|¡
i�1

tti1, ti2, ti3u, I � ∅

,.
- (4.34)

and the reduced parameter collection we will need to study the first and second order

moments is

p̃ �
pijpT q : i, j � 1, . . . , k, T P tti1, ti2, ti3u � ttj1, tj2, tj3u

(
. (4.35)

In this thesis we will limit ourselves to Trinomial distributions Ti assuming values

ti1 � �1, ti2 � 0 and ti3 � 1 (4.36)

for every i � 1, . . . , k; we will denote them with t1, t2 and t3 respectively. The corre-

sponding parameters are

PpTi � �1q � pip�1q, PpTi � 0q � pip0q and PpTi � 1q � pip1q, (4.37)

so we will write Ti � Tri
�
pip�1q, pip0q, pip1q

�
. The expected value and the variance of

Ti are

EpTiq � pip1q � pip�1q (4.38)

VARpTiq � pip1q � pip�1q �
�
pip1q � pip�1q

�2
(4.39)

60

and the covariance between two variables Ti and Tj is equal to

COVpTi, Tjq �
�
pijp1,1q � pip1qpjp1q

�� �
pijp�1,�1q � pip�1qpjp�1q

��
� �

pijp�1,1q � pip�1qpjp1q
�� �

pijp1,�1q � pip1qpjp�1q

�
. (4.40)

4.3.1 Relationship with the Multivariate Bernoulli

The choice of �1, 0 and 1 as the values assumed by the elements Ti of T establishes

a strong link between the Trinomial and the Bernoulli distribution.

Theorem 4.5. Let T be a Trinomial random variable assuming values t1 � �1, t2 � 0,

and t3 � 1 with probabilities pp�1q, pp0q, and pp1q, pp�1q � pp0q � pp1q � 1. Then

|T | � B � Berppq, where p � pp�1q � pp1q.

Proof. The transformed random variable |T | can assume only two values, |t2| � 0 and

|t1| � |t3| � 1, the former with probability 1� p � pp0q and the latter with probability

p � pp�1q � pp1q. Therefore |T | � Berppq.

This link can easily be extended to the multivariate case.

Theorem 4.6. Let T � rT1, T2, . . . , TksT be a multivariate Trinomial random variable

whose components have the same distribution as the univariate Trinomial described in

Theorem 4.5. Then |T| � B � Berkppq.

Proof. As proved in Theorem 4.5, each element |Ti| of the random vector |T| is a

Bernoulli random variable. Furthermore the parameter collection of T assumes the

form

p �
!
pIpT q : I � t1, . . . , ku, T P t�1, 0, 1u|I|, I � ∅

)
(4.41)

and reduces to

p �
!
pIpT q : I � t1, . . . , ku, T P t0, 1u|I|, I � ∅

)
� tpI : I � t1, . . . , ku, I � ∅u (4.42)

after the transformation. Therefore |T| � Berkppq is a uniquely identified multivariate

Bernoulli random variable according to the definition introduced at the beginning of

Section 4.2.

An important consequence of Theorem 4.6 is that the first and second order moments

of the absolute value of a multivariate Trinomial simplify to those of the multivariate

61

Bernoulli.

Ep|Ti|q � pp�1q � pp1q � pi (4.43)

VARp|Ti|q � pp�1q � pp1q �
�
pp�1q � pp1q

�2 � pi � p2
i (4.44)

COVp|Ti|, |Tj |q �
�
pijp1,1q � pip1qpjp1q

�� �
pijp�1,�1q � pip�1qpjp�1q

��
� �

pijp�1,1q � pip�1qpjp1q
�� �

pijp1,�1q � pip1qpjp�1q

�
� pij �

�
pip�1q � pip1q

� �
pjp�1q � pjp1q

�
� pij � pipj (4.45)

Furthermore, the variance of each univariate Trinomial Ti can be decomposed in two

parts: one is a function of the corresponding component |Ti| � Bi of the transformed

random vector, while the other depends only on the probabilities associated with �1

and 1.

VARpTiq � pip1q � pip�1q �
�
pip1q � pip�1q

�2

� pip1q � pip�1q �
�
pip1q � pip�1q

�2 � 4pip1qpip�1q

� pi � p2
i � 4pip1qpip�1q

� VARpBiq � 4pip1qpip�1q (4.46)

Covariance can be decomposed in a similar way.

COVpTi, Tjq �
�
pijp1,1q � pip1qpjp1q

�� �
pijp�1,�1q � pip�1qpjp�1q

��
� �

pijp�1,1q � pip�1qpjp1q
�� �

pijp1,�1q � pip1qpjp�1q

�
� pij � pipj � 2

�
pijp�1,1q � pip�1qpjp1q

�� 2
�
pijp1,�1q � pip1qpjp�1q

�
� COVpBi, Bjq�

� 2
�
pijp�1,1q � pip�1qpjp1q � pijp1,�1q � pip1qpjp�1q

�
. (4.47)

4.3.2 Properties of the Covariance Matrix

The covariance matrix Σ of a multivariate Trinomial random vector has again sev-

eral interesting numerical properties, as was the case for the multivariate Bernoulli

distribution. The form of Σ and some of its properties are similar to those derived in

Section 4.2.2, with the notable exception of the correspondence between uncorrelation

and stochastic independence proved in Section 4.2.1.

62

For example, the diagonal elements σii of Σ are again bounded. This can be proved

either by solving the constrained maximization problem

max
pip1q,pip�1q

VARpTiq � pip1q � pip�1q �
�
pip1q � pip�1q

�2

s.t. pip1q ¥ 0, pip�1q ¥ 0, pip1q � pip�1q ¤ 1 (4.48)

with the extended Lagrange multipliers method (Nocedal and Wright, 1999) or as a

direct consequence of the following theorem by Moors and Muilwijk (1971).

Theorem 4.7. If a discrete random variable X can take values only in the segment

rx1, xns of the real axis, the maximum standard deviation of X equals 1
2pxn� x1q. The

maximum is reached if X takes the values x1 and xn with probabilities 1
2 each.

In both cases we obtain that the maximum variance is achieved for pip1q � pip�1q � 1
2

and is equal to 1, which means that

σii P r0, 1s and |σij | P r0, 1s. (4.49)

Furthermore, we can also prove that the eigenvalues λ1, . . . , λk of Σ are bounded using

the same arguments as in Theorem 4.4.

Theorem 4.8. Let T � rT1, T2, . . . , TksT be a multivariate Trinomial random variable,

and let Σ � rσijs, i, j � 1, . . . , k be its covariance matrix. Let λi, i � 1, . . . , k be the

eigenvalues of Σ. Then

0 ¤
ķ

i�1

λi ¤ k and 0 ¤ λi ¤ k. (4.50)

Proof. See the proof of Theorem 4.4.

These bounds define a convex set in Rk, defined by the family

D �
!

∆k�1pcq : c P r0, ks
)

(4.51)

where ∆k�1pcq is the non-standard k � 1 simplex from Equation 4.29.

63

4.4 Bootstrap and Variability

We will now apply the results from Sections 4.2 and 4.3 to the analysis of the vari-

ability of the network structures described in Section 4.1. In particular we will consider

the three possible outcomes of bootstrap resampling (minimum, intermediate and max-

imum entropy) and provide a characterization of the first and second order moments

of the distributions associated with undirected and directed acyclic graphs.

4.4.1 Undirected Graphs

In the minimum entropy case all the edge sets E1, . . . , Em of the bootstrapped graphs

are equal, which means that an edge eij is either present in all of them or is never

present; therefore

EpEijq � pij �
#

1 if eij P E
0 otherwise

and Σ � O. (4.52)

The maximum entropy case displays a completely different behaviour, as shown in

the following theorem on the probability of one and two edges.

Theorem 4.9. Let U1, . . . , Un, n � 2m, m � 1
2 |V|p|V| � 1q be all possible undirected

graphs with vertex set V and let

PpUkq � 1

n
k � 1, . . . , n. (4.53)

Let eij and ekl, i � j, k � l be two distinct edges in V �V. Then

Ppeijq � 1

2
and Ppeij , eklq � 1

4
. (4.54)

Proof. The number of possible structures of an undirected graph is given by the Carte-

sian product of the possible states of its m edges, resulting in

|t0, 1u � . . .� t0, 1u| � |t0, 1um| � 2m (4.55)

possible undirected graphs. Then eij is present in

|t0, 1u � . . .� t1u � . . .� t0, 1u| � ��t1u � t0, 1um�1
�� � 2m�1 (4.56)

64

graphs and eij and ekl are simultaneously present in

|t0, 1u � . . .� t1u � t1u � . . .� t0, 1u| � ��t1u2 � t0, 1um�2
�� � 2m�2 (4.57)

graphs. Therefore

Ppeijq � 2m�1 PpUkq
2m PpUkq � 1

2
and Ppeij , eklq � 2m�2 PpUkq

2m PpUkq � 1

4
. (4.58)

An immediate consequence of this theorem is that

pij � 1

2
for every possible eij , i � j and Σ � 1

4
Im. (4.59)

Note that each edge displays its maximum possible variability, and that the fact that

all non-diagonal elements of Σ are equal to 0 proves that the edges are mutually inde-

pendent according to Theorem 4.1.

The intermediate entropy case displays a middle ground behaviour between the min-

imum and maximum entropy cases. The probabilities associated with each edge and

each pair of edges can be estimated from E1, . . . , Em with the respective empirical

frequencies,

p̂ij � 1

m

m̧

b�1

1te PEbupeijq and p̂ij,kl � 1

m

m̧

b�1

1te PEbupeijq1te PEbupeklq. (4.60)

The expected value and the covariance matrix Σ do not have a definite form beyond

the bounds derived in Section 4.2.2. For real-world data we have in general that most

possible edges do not appear in any bootstrapped network because they represent

conditional dependence relationships that are completely unsupported by the data.

This means that Epeijq � 0 and VARpeijq � 0 for many eij P V � V, so Σ is almost

surely singular unless they are excluded from the analysis. Edges that appear with

frequencies around 1
2 have about the same marginal probability and variance as in

the maximum entropy case, so their behaviour is very close to random noise. On

the other hand, edges with probabilities near 0 or 1 are considered to have a good

support (against or in favour, respectively). As p̂ij approaches 0 or 1 eij approaches

its minimum entropy.

The closeness of a multivariate Bernoulli distribution to the minimum and maximum

entropy cases can be represented in an intuitive way by considering the eigenvalues

65

Figure 4.1: The covariance matrices Σ1, Σ2 and Σ3 represented as functions of their eigenvalues
in the non-standard simplex D (green). The points p0, 0q and p 14 ,

1
4 q correspond to the minimum

entropy and maximum entropy cases.

λ � rλ1, . . . , λksT of its covariance matrix Σ. Recall that the λ can assume values in

the convex set D defined in Equation 4.29, which corresponds to the region of the first

orthant delimited by the non-standard simplex ∆k�1pk4 q. In the minimum entropy case

we have that Σ � O, so λ1 � . . . � λk � 0, and in the maximum entropy case Σ � 1
4Ik,

so λ1 � . . . � λk � 1
4 ; both points lie on the boundary of D, the first in the origin

and the second in the middle of ∆k�1pk4 q. Since the eigenvalues of Σ also lie in D, the

distance between λ and these two points provides an intuitive way of measuring the

entropy of the set of bootstrapped network structures. A simple example comprising

three multivariate Bernoulli distributions over a set of two edges is illustrated below.

Example 4.2. Consider three multivariate Bernoulli distributions B1, B2, B3 over

two edges (denoted with e1 � E1 and e2 � E2) with covariance matrices

Σ1 � 1

25

�
6 1

1 6

�
, Σ2 � 1

625

�
66 �21

�21 126

�
, Σ3 � 1

625

�
66 91

91 126

�
. (4.61)

and eigenvalues

λ1 �
�

0.28

0.20

�
, λ2 �

�
0.2121

0.095

�
, λ3 �

�
0.3069

0.0003

�
. (4.62)

Their position in D is shown in Figure 4.1. B1 is the closest to
�

1
4 ,

1
4

�
, the point

corresponding to the maximum entropy case, while B2 and B3 are more distant because

66

of the increasing correlation between e1 and e2 (which are independent in the maximum

entropy case). The correlation coefficients for B1, B2 and B3 are

CORB1pE1, E2q � 0.1666, CORB2pE1, E2q � �0.2303, CORB3pE1, E2q � 0.9978

(4.63)

and account for the increasing difference between the eigenvalues of each covariance

matrix. In fact Σ3 is nearly singular because of the very strong linear relationship

between e1 and e2, and is therefore very close to one of the axes delimiting the first

quadrant.

If we denote with

E00 � t∅u, E01 � te2u, E10 � te1u, and E11 � te1, e2u (4.64)

all possible edge sets and with m00, m01, m10 and m11 the respective absolute frequencies

in the bootstrapped networks, for B1 we have

m00 � 5, m01 � 5, m10 � 5 and m11 � 10. (4.65)

This is indeed pretty close to a uniform distribution over the space of the graphs (which

would require an absolute frequency of 6.25 for each possible edge set). The probability

of both e1 and e2 is 0.6 and the variance is 0.24, which are again similar to the reference

values for the maximum entropy case.

As for B2, we have

m00 � 0, m01 � 3, m10 � 7 and m11 � 15. (4.66)

The distribution of the absolute frequencies presents significant differences from a uni-

form distribution. The probabilities of e1 and e2 are respectively 0.88 and 0.72, and

their variances are 0.1056 and 0.2016. Considering also the correlation between e1 and

e2, it is intuitively clear why Σ2 is not as close as Σ1 to
�

1
4 ,

1
4

�
. This also true for

B3, which has the same marginal distributions for e1 and e2 as B2 but with a much

stronger correlation.

4.4.2 Directed Acyclic Graphs

The behaviour of the multivariate Trinomial distribution in the minimum and in-

termediate entropy cases is similar to the one of the multivariate Bernoulli in many

67

aspects, but presents profound differences in the maximum entropy case. The reason

for these differences is that the structure of a Bayesian network is assumed to be acyclic.

Therefore the state of each arc (i.e. whether is present in the graph and its direction)

is influenced by the state of all other possible arcs even in the maximum entropy case,

when otherwise they would be independent (this is trivial to prove by adapting Theorem

4.9). Furthermore, the acyclicity constraint cannot be written in closed form, which

makes the derivation of exact results on the moments of the distribution particularly

difficult.

To obtain some simple expressions for the expected value and the covariance matrix

we will first prove a simple theorem on directed acyclic graphs, which essentially states

that if we reverse the direction of every arc the resulting graph is still a directed acyclic

graph.

Theorem 4.10. Let G � pV, Aq be a directed acyclic graph, and let G� � pV, A�q
another directed graph such that

ÝÑaij P A� ðñÐÝaij P A and ÐÝaij P A� ðñ ÝÑaij P A (4.67)

for every aij P A. Then G� is also acyclic.

Proof. Let’s assume by contradiction that G� is cyclic; this implies that there are one

or more nodes vi P V such that

vi
ÝÑaijÝÝÑ vj Ñ . . .Ñ vk

ÝÑakiÝÝÑ vi (4.68)

for some vj , vk P V. However, this would mean that in G we would have

vi
ÐÝakiÝÝÑ vk Ñ . . .Ñ vj

ÐÝaijÝÝÑ vi (4.69)

which is not possible since G is assumed to be acyclic.

An immediate consequence of this theorem is that for every directed acyclic graph

including the arc ÝÑaij there is another directed acyclic graph including the arc ÐÝaij . Since

in the maximum entropy case all directed acyclic graphs have the same probability,

this implies that both directions of every arc have the same probability,

ÝÑpij � ÐÝpij for every possible aij , i � j. (4.70)

68

Then the expected value of each marginal Trinomial distribution is equal to

EpAijq � ÝÑpij �ÐÝpij � 0 (4.71)

and its variance is equal to

VARpAijq � ÝÑpij �ÐÝpij � pÝÑpij �ÐÝpijq2 � 2ÝÑpij . (4.72)

The joint probabilities associated with each pair of arcs present similar symmetries.

If we denote with åij the event that arc aij is not present in the graph and consider that

there is no explicit ordering among the arcs we have, with a slight abuse in notation,

PpÝÑaij ,ÝÑaklq � PpÐÝaij ,ÐÝaklq, PpÝÑaij ,ÐÝaklq � PpÐÝaij ,ÝÑaklq, (4.73)

Ppåij ,ÝÑaklq � PpÝÑaij , åklq � Ppåij ,ÐÝaklq � PpÐÝaij , åklq. (4.74)

Then the expression for the covariance simplifies to

COVpAij , Aklq � 2 rPpÝÑaij ,ÝÑaklq � PpÝÑaij ,ÐÝaklqs , (4.75)

which can be interpreted as the difference in probability between a serial connection

and a converging connection if the arcs are incident on a common node. Note that the

sign of COVpAij , Aklq depends on the way the orientations of each arc are associated

with 1 and �1; a simple way to obtain a consistent parameterization is to follow the

topological ordering of the graph or the natural ordering of the variables (i.e. if i ¤ j

then the arc incident on these nodes is taken to be Aij , ÝÑaij is associated with 1 and ÐÝaij
with �1).

These equalities drastically reduce the number of free parameters. The marginal

Trinomial distribution of each arc now depends only on ÝÑpij , whose value can be derived

from the following numerical approximation by Melançon et al. (2000).

Theorem 4.11. The average number of arcs in a directed acyclic graph with n nodes

is approximately 1
4n

2.

69

Theorem 4.12. Let G � pV, Aq be a directed acyclic graph with n nodes. Then for

each possible arc aij P V �V, i � j we have that in the maximum entropy case

ÝÑpij � ÐÝpij � 1

4
� 1

4pn� 1q and p̊ij � 1

2
� 1

2pn� 1q . (4.76)

Proof. Each possible arc can appear in the graph in only one direction at a time, so a

directed acyclic graph can have at most
�
n
2

� � 1
2npn� 1q arcs. Therefore

ÝÑpij �ÐÝpij �
1
4n

2

1
2npn� 1q �

1

2
� 1

2pn� 1q . (4.77)

But in the maximum entropy case we also have that ÝÑpij � ÐÝpij , so

ÝÑpij � ÐÝpij � 1

4
� 1

4pn� 1q and p̊ij � 1� 2ÝÑpij � 1

2
� 1

2pn� 1q , (4.78)

which completes the proof.

The quality of this approximation for ÝÑpij is examined in Figure 4.2 and Figure 4.3.

In Figure 4.2 the values provided by Theorem 4.12 for directed acyclic graphs with 3,

4, 5, 6 and 7 nodes are compared to the corresponding true values. The latter have

been computed by enumerating all possible directed acyclic graphs of that size (i.e. the

whole population) and computing the relative frequency of each possible arc. In Figure

4.3 the values provided by Theorem 4.12 for graphs with 8 to 50 nodes are compared

with the corresponding estimated values computed over a set of 109 directed acyclic

graphs of the same size. The latter have been generated with uniform probability using

the algorithm from Ide and Cozman (2002) as implemented in bnlearn.

We can clearly see that the approximate values are very close to the corresponding

true (in Figure 4.2) or estimated (in Figure 4.3) ones for graphs with at least 6 nodes.

This is not a significant limitation because for graphs with 3, 4 and 5 nodes the true

values can be easily computed; they are provided in Appendix A along with the true

values for other quantities of interest. Furthermore, it is evident both from Theorem

4.12 and from Figure 4.2 and Figure 4.3 that as the number of nodes diverges

lim
nÑ8

ÝÑpij � lim
nÑ8

ÐÝpij � 1

4
and lim

nÑ8
p̊ij � 1

2
. (4.79)

If we take the absolute value of the Trinomial random variable Aij associated with aij ,

according to Theorem 4.5 the resulting random variable is Bippijq, pij � 1
2 , which is

70

number of nodes

pr
ob

ab
ili

ty

0.
25

0.
30

0.
35

0.
40

3 4 5 6 7

●

●

●

●

●

●

●

●

●

●

absent

0.
28

0.
30

0.
32

0.
34

0.
36

0.
38

3 4 5 6 7

●

●

●

●

●

●

●

●

●

●

present (in either direction)

Figure 4.2: Exact (pink) and approximate (blue) probabilities of an arc being present or absent
from a directed acyclic graph with 3, 4, 5, 6, and 7 nodes.

number of nodes

pr
ob

ab
ili

ty

0.
42

0.
44

0.
46

0.
48

0.
50

10 20 30 40 50

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
● ●

absent

0.
25

0.
26

0.
27

0.
28

0.
29

10 20 30 40 50

●

●

●

●

●

●
●

●
●

●
●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
● ●

present (in either direction)

Figure 4.3: Estimated (pink) and approximate (blue) probabilities of an arc being present or
absent from a directed acyclic graph with 8 to 50 nodes. The black dashed lines represent the
respective limiting values.

71

the marginal distribution of an edge in an undirected graph in the maximum entropy

case. The absolute value transformation can be interpreted as ignoring the direction

of the arc; if we do that the marginal distribution of an arc is the same as the one of

the corresponding edge for sufficiently large graphs.

No result similar to Theorem 4.11 has been proved for arbitrary pairs of arcs; therefore

the structure of the covariance matrix Σ can be derived only in part. Variances can be

approximated using again the probabilities provided by Theorem 4.12:

VARpAijq � 2ÝÑpij � 1

2
� 1

2pn� 1q Ñ
1

2
as nÑ8. (4.80)

Therefore, maximum variance (of each arc) and maximum entropy (of the network

structure) are distinct, as opposed to what happens in undirected graphs. However,

we can use the decomposition of the variance introduced in Equation 4.46 to motivate

why this is still a “worst case” outcome of bootstrap resampling. We can see from

Figure 4.5 that in the maximum entropy case the contribution of the presence of an

arc (given by the transformation |Aij |) and its direction (given by the 4ÝÑpijÐÝpij � 4ÝÑpij2

term) to the variance are asymptotically equal. This is a consequence of the limits in

Equation 4.79, which imply that an arc (modulo its direction) has the same probability

to be present in or absent from the graph and that its directions also have the same

probability. This represents the worst possible behaviour because we are not able to

make any decision either about the presence of the arc or its direction.

As for the covariances, it is possible to obtain accurate bounds using Hoeffding’s

identity (Hoeffding, 1940; Fisher and Sen, 1994),

COVpX,Y q �
¼
R2

FX,Y px, yq � FXpxqFY pyqdxdy, (4.81)

and the decomposition of the joint distribution of dependent random variables provided

by the Farlie-Morgenstern-Gumbel (FMG) family of distributions (Mari and Kotz,

2001), which has the form

FX,Y px, yq � FXpxqFY pyq r1� εp1� FXpxqqp1� FY pyqqs , |ε| ¤ 1. (4.82)

In both cases FX,Y , FX and FY are the cumulative distribution functions of the joint

and marginal distributions of X and Y .

Theorem 4.13. Let G � pV,Aq be a directed acyclic graph, and let aij, i � j and akl,

72

k � l be two possible arcs in V�V. Then in the maximum entropy case we have that

|COVpAij , Aklq| Æ 4

�
3

4
� 1

4pn� 1q
�2 �1

4
� 1

4pn� 1q
�2

(4.83)

and

|CORpAij , Aklq| Æ 2

�
3

4
� 1

4pn� 1q
�2 �1

4
� 1

4pn� 1q
�
. (4.84)

Proof. In the maximum entropy case both aij and akl have the same marginal distri-

bution function,

FApaijq �

$''''''''&
''''''''%

0 in p�8,�1s
1

4
� 1

4pn� 1q in p�1, 0s
3

4
� 1

4pn� 1q in p0, 1s

1 in p1,�8q

, (4.85)

so their joint distribution can be written as a member of the Farlie-Morgenstern-Gumbel

family of distribution as

FAij ,Akl
paij , aklq � FApaijqFApaklqr1� εp1� FApaijqqp1� FApaklqqs. (4.86)

Then if we apply Hoeffding’s identity from Equation 4.81 and replace the joint dis-

tribution function FAij ,Akl
paij , aklq with the right hand of Equation 4.86 we have that

|COVpAij , Aklq| �

�
������

¸
t�1,0,1u

¸
t�1,0,1u

FAij ,Akl
paij , aklq � FApaijqFApaklq

������
¤

¸
t�1,0,1u

¸
t�1,0,1u

��FAij ,Akl
paij , aklq � FApaijqFApaklq

��
�

¸
t�1,0,1u

¸
t�1,0,1u

|FApaijqFApaklqr1� εp1� FApaijqqp1� FApaklqqs � FApaijqFApaklq|

�
¸

t�1,0u

¸
t�1,0u

p1� FApaijqqp1� FApaklqq. (4.87)

We can now compute the bounds for |COVpaij , aklq| and |CORpaij , aklq| using only the

marginal distribution function FA from Equation 4.85 and the variance from Equation

4.80, thus obtaining the expressions in Equation 4.83 and Equation 4.84.

73

number of nodes

co
va

ria
nc

e/
co

rr
el

at
io

n

0.
28

0
0.

28
5

0.
29

0
0.

29
5

10 20 30 40 50

●

●

●

●

●

●
●

●
●

●
●

●
● ●

correlation

0.
08

0.
10

0.
12

0.
14

10 20 30 40 50

●

●

●

●

●

●

●
●

●
●

●
●

● ●

covariance

Figure 4.4: Bounds for the absolute value of the covariance and the correlation coefficient of
two arcs in a directed acyclic graph with 6 to 50 nodes. The black dashed lines represent the
respective limiting values.

arc probability (modulo its direction)

va
ria

nc
e

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

●

●

Figure 4.5: Decomposition of the asymptotic variance of an arc in the part that depends only on
its presence (green) and the part that depends only on its direction (pink). The dots correspond
to the respective values in the maximum entropy case.

74

The bounds obtained from this theorem appear quite precise in the light of the true

values for the covariance and correlation coefficients (computed by enumerating all

possible graphs of size 3 to 7 as it was done for ÝÑpij). Figure 4.4 shows the bounds for

graphs with 6 to 50 nodes; for graphs with 3, 4 and 5 nodes the approximation of ÝÑpij the

bounds are based on is very loose, and the true values of covariance and correlation are

known. Non-null covariances range from �0.08 (for graphs with 3 nodes) to �0.08410

(for graphs with 7 nodes), while non-null correlation coefficients vary from �0.125

(for graphs with 3 nodes) to �0.1423 (for graphs with 7 nodes). Both covariance and

correlation appear to be strictly increasing in modulus as the number of nodes increases,

and converge to the limiting values of the bounds (0.140625 and 0.28125, respectively)

from below.

Some other interesting properties are apparent from true values of the covariance

coefficients reported in Appendix A. They are reported below as conjectures because,

while they describe a systematic behaviour that emerges from the graph sizes we have

a complete enumeration for, we were not able to substantiate them with a formal proof.

Conjecture 4.1. Arcs which are not incident on a common node are uncorrelated.

This is a consequence of the fact that if we consider Aij and Akl with i � j � k � l,

we have PpÝÑaij ,ÝÑaklq � PpÝÑaij ,ÐÝaklq and therefore COVpAij , Aklq � 0.

Conjecture 4.2. The covariance matrix Σ is sparse.

The proportion of arcs incident on a common node converges to zero as the number

of nodes increases; therefore if we assume Conjecture 4.1 is true the proportion of

elements of Σ that are equal to 0 has limit

1 ¥ lim
nÑ8

�
n
2

��
n�2

2

��
n
2

��
n
2

�� �
n
2

� ¥ lim
nÑ8

pn� 2qpn� 3q
npn� 1q � 1. (4.88)

Furthermore, even arcs that are incident on a common node are not strongly correlated.

Conjecture 4.3. Both covariance and correlation between two arcs incident on a com-

mon node are monotonically increasing in modulus.

Conjecture 4.4. The covariance between two arcs incident on a common node takes

values in the interval r0.08, 0.140625s in modulus, while the correlation takes values in

r0.125, 0.28125s in modulus.

These intervals can be further reduced to r0.08410, 0.140625s and r0.1423, 0.28125s
for graphs larger than 7 nodes due to Conjecture 4.3.

75

On the other hand in the minimum entropy case we have that

EpAijq �

$''&
''%
� 1 if ÐÝaij P A
0 if ÐÝaij ,ÝÑaij R A
1 if ÝÑaij P A

and Σ � O (4.89)

like in the minimum entropy case of undirected graphs. The intermediate entropy case

again ranges from being very close to the minimum entropy case (when the graph struc-

ture displays little variability) to being very close to the maximum entropy case (when

the graph structure displays substantial variability). The bounds on the eigenvalues of

Σ derived in Theorem 4.8 allow again a graphical representation of the variability of

the network structure, as it was done in Example 4.2 for the undirected graphs.

76

Chapter 5

Measuring the Variability of

Network Structures

In this chapter we will introduce three univariate descriptive statistics of the variabil-

ity of a network structure, which combine the results presented in the previous chapter

and classic multivariate statistics. These statistics are easy to interpret and will be

used to define some asymptotic and approximate hypothesis tests. Furthermore, we

will provide some improvements in their estimation (and in the estimation of second

order moments) using shrinkage regularization techniques introduced by Ledoit and

Wolf (2003) and Schäfer and Strimmer (2005).

5.1 Descriptive Statistics for Undirected Graphs

Several functions have been proposed in literature as univariate measures of spread

of a multivariate distribution, usually under the assumption of multivariate normality;

for some examples see Muirhead (1982) and Bilodeau and Brenner (1999). Three of

them in particular can be used as descriptive statistics for the multivariate Bernoulli

distribution:

• the generalized variance,

VARGpΣq � detpΣq. (5.1)

• the total variance, called total variation in Mardia et al. (1979),

VART pΣq � trpΣq. (5.2)

77

• the squared Frobenius matrix norm of the difference between Σ and a predeter-

mined matrix, such as

VARN pΣq � |||Σ� k

4
Ik|||2F . (5.3)

Both generalized variance and total variance associate high values of the statistic to

unstable network structures, and are bounded due to the properties of the covariance

matrix Σ of the multivariate Bernoulli. For total variance it is easy to show that

0 ¤ VART pΣq �
ķ

i�1

σii �
ķ

i�1

λi ¤ k

4
(5.4)

due to the bounds on the variances σii from Equation 4.23 and the corresponding

bounds on the eigenvalues λi from Theorem 4.4. Generalized variance is similarly

bounded due to Hadamard’s theorem on the determinant of a non-negative definite

matrix (Seber, 2008):

0 ¤ VARGpΣq �
k¹
i�1

λi ¤
k¹
i�1

σii ¤
�

1

4

k
. (5.5)

They reach the respective maxima in the maximum entropy case and are equal to zero

only in the minimum entropy case. Generalized variance is also strictly convex (the

maximum is reached only for Σ � 1
4Ik), but it is equal to zero when Σ is rank deficient.

For this reason it may be convenient to reduce Σ to a smaller, full rank matrix (say

Σ�) and consider VARGpΣ�q instead of VARGpΣq; using the regularized estimator for Σ

presented in Section 5.3 is also a viable option.

The squared Frobenius matrix norm from Equation 5.3, on the other hand, associates

high values of the statistic to stable network structures. It can be rewritten in terms

of the eigenvalues of Σ as

VARN pΣq �
ķ

i�1

�
λi � k

4

2

. (5.6)

It has a unique maximum (in the minimum entropy case), which can be computed as

the solution of the constrained maximization problem in λ � rλ1, . . . , λksT

max
λPD

fpλq �
ķ

i�1

�
λi � k

4

2

subject to λi ¥ 0,
ķ

i�1

λi ¤ k

4
(5.7)

78

Figure 5.1: Squared Frobenius matrix norms computed using 1
4IK (on the left) and k

4 Ik (on
the right) in D for k � 2. The green area is the set D of the possible eigenvalues of Σ and the
red lines are level curves.

using the extended Lagrange multipliers methods. Furthermore, it has a single min-

imum in λ� � r1
4 , . . . ,

1
4 s, which is the projection of rk4 , . . . , k4 s onto the set D and

coincides with the maximum entropy case.

The use of k
4Ik instead of 1

4Ik (the covariance matrix arising from the maximum

entropy case) is motivated by the need of keeping the interpretation of VARN pΣq as

clear as possible. The squared Frobenius matrix norm of the difference between Σ

and 1
4Ik has a varying number of global maxima depending on the number k of edges

considered in the analysis. They are the solutions of the constrained maximization

problem

max
λPD

fpλq �
ķ

i�1

�
λi � 1

4

2

subject to λi ¥ 0,
ķ

i�1

λi ¤ k

4
. (5.8)

This configuration of global maxima is not a significant problem for the results based

on the asymptotic distribution of the multivariate Bernoulli distribution, but prevents

any direct interpretation of quantities based on this difference in matrix norm as de-

scriptive statistics. On the other hand, the difference in squared Frobenius matrix

norm

VARN pΣq � |||Σ� k

4
Ik|||2F �

ķ

i�1

�
λi � k

4

2

(5.9)

79

has both a unique global minimum (because it is a convex function),

min
D

VARN pΣq � VARN

�
1

4
Ik

�

ķ

i�1

�
1

4
� k

4

2

� kpk � 1q2
16

, (5.10)

and a unique global maximum,

max
D

VARN pΣq � VARN pOq �
ķ

i�1

�
k

4

2

� k3

16
, (5.11)

which correspond to the minimum entropy (λ � r0, . . . , 0s) and the maximum entropy

(λ � r1
4 , . . . ,

1
4 s) covariance matrices respectively (see Figure 5.1).

All the descriptive statistics introduced in this section can be normalized as follows:

VART pΣq � VART pΣq
maxΣ VART pΣq �

4VART pΣq
k

,

VARGpΣq � VARGpΣq
maxΣ VARGpΣq � 4kVARGpΣq,

VARN pΣq � maxΣ VARN pΣq � VARN pΣq
maxΣ VARN pΣq �minΣ VARN pΣq �

k3 � 16VARN pΣq
kp2k � 1q .

All of these normalized statistics vary in the r0, 1s interval and associate high values

to networks whose structure display a high variability across the bootstrap samples.

Equivalently, we can define

VART pΣq � 1� VART pΣq,
VARGpΣq � 1� VARGpΣq,
VARN pΣq � 1� VARN pΣq

which associate high values to networks with little variability, and can be used as

measures of the difference in behaviour from the maximum entropy case.

5.2 Hypothesis Tests for Undirected Graphs

5.2.1 Asymptotic Inference

The limiting distribution of the descriptive statistics defined in the previous section

can be derived by replacing the covariance matrix Σ with its (unbiased) maximum

likelihood estimator Σ̂ and by considering the multivariate Gaussian distribution from

80

Equation 4.32. One of the simplest hypotheses we may be interested in is

H0 : Σ � 1

4
Ik H1 : Σ � 1

4
Ik, (5.12)

which relates the sample covariance matrix with the one from the maximum entropy

case. Such a test answers the question whether the network structure learned from the

data is random noise or it encodes real, systematic dependence relationships. Testing

such an hypothesis may be useful, for example, to check whether the sample is large

enough to reliably learn the network structure. Furthermore, the null distribution is ex-

tremely regular; as shown in Section 4.4.1, the multivariate Bernoulli distribution in the

maximum entropy case has independent marginals distributed as Berp1
2q. This makes

the use of the asymptotic multivariate Gaussian distribution feasible, and convergence

as fast as it can be in a high-dimensional setting.

For total variance we have from Muirhead (1982) that

tT � 4m trpΣ̂q .� χ2
mk, (5.13)

and since the maximum value of trpΣq is achieved in the maximum entropy case, the

hypothesis in Equation 5.12 assumes the form

H0 : trpΣq � k

4
H1 : trpΣq k

4
. (5.14)

Then the observed significance value is

α̂T � PptT ¤ tossT q, (5.15)

and can be improved with the finite sample correction

α̃T � P ptT ¤ tossT | tT P r0,mksq � PptT ¤ tossT q
PptT ¤ mkq , (5.16)

which accounts for the bounds on VART pΣq from Equation 5.4.

As for generalized variance, there are several possible asymptotic and approximate

test statistics with different distributions:

• the Gaussian test statistic defined in Anderson (2003),

tG1 �
?
m

�
detpΣ̂q

detp1
4Ikq

� 1

�
.� Np0, 2kq; (5.17)

81

• the Gamma test statistic defined in Steyn (1978),

tG2 �
mk

2
k

d
detpΣ̂q

detp1
4Ikq

.� Ga

�
kpm� 1� kq

2
, 1

; (5.18)

• the saddlepoint approximation defined in Butler et al. (1992).

As before, the hypothesis in Equation 5.12 assumes the form

H0 : detpΣq � det

�
1

4
Ik

H1 : detpΣq det

�
1

4
Ik

. (5.19)

The observed significance values for the Gaussian and Gamma distributions are

α̂G1 � PptG1 ¤ tossG1
q and α̂G2 � PptG2 ¤ tossG2

q, (5.20)

and the respective finite sample corrections for the bounds on VARN pΣq are

α̃G1 � P
�
tG1 ¤ tossG1

| tG1 P
��?m, 0�� � PptG1 ¤ tossG1

q � PptG1 ¤ �?mq
PptG1 ¤ 0q � PptG1 ¤ �?mq , (5.21)

α̃G2 � P

�
tG2 ¤ tossG2

| tG2 P
�
0,
mk

2

�

� PptG2 ¤ tossG2

q
PptG2 ¤ mk

2 q
. (5.22)

The test statistic associated with the squared Frobenius matrix norm is the test for the

equality of two covariance matrices defined in Nagao (1973),

tN � m

2
tr

�
��

Σ̂

�
1

4
Ik

�1

� Ik

�2
�

� m

2
tr

��
4Σ̂� Ik

�2

.� χ2
1
2
kpk�1q

, (5.23)

because

tr

��
4Σ̂� Ik

�2

� 16 tr

��
UΛUH � 1

4
Ik

� �
UΛUH � 1

4
Ik

�

�

� 16 tr

�
U

�
Λ� 1

4
Ik

�
UHU

�
Λ� 1

4
Ik

�
UH

� 16 tr

��
Λ� 1

4
Ik

�2
�
�

� 16
ķ

i�1

�
λi � 1

4

2

� 16|||Σ̂� 1

4
Ik|||2F , (5.24)

where UΛUH is the spectral decomposition of Σ̂. Note that the matrix k
4Ik used in

VARN pΣq is not a valid covariance matrix for a multivariate Bernoulli distribution (the

82

tT pΣq
10 20 50 100 200

Σ1
0.491137 0.457610 0.405404 0.354943 0.291243
0.906041 0.863836 0.781414 0.691495 0.571734

Σ2
0.094193 0.026330 0.000852 0.000003 0.000000
0.173766 0.049704 0.001644 0.000007 0.000000

Σ3
0.094193 0.026330 0.000852 0.000003 0.000000
0.173766 0.049704 0.001644 0.000007 0.000000

tG2pΣq
Σ1

0.603944 0.524258 0.423183 0.341131 0.250054
0.905218 0.847522 0.735799 0.616696 0.465129

Σ2
0.121488 0.023514 0.000278 0.000000 0.000000
0.182091 0.0380138 0.000484 0.000000 0.000000

Σ3
0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000

tN pΣq
Σ1

0.965205 0.909123 0.714937 0.436839 0.142271
0.964547 0.909108 0.714937 0.436839 0.142271

Σ2
0.564938 0.253762 0.017090 0.000142 0.000000
0.556708 0.253636 0.017090 0.000142 0.000000

Σ3
0.154551 0.014796 0.000008 0.000000 0.000000
0.138557 0.014628 0.000008 0.000000 0.000000

Table 5.1: Asymptotic significance values of tT , tG2
and tN for Σ1, Σ2 and Σ3; the ones

computed with finite sample corrections are reported in bold.

diagonal elements of Σ are bounded in r0, 1
4 s); therefore it can not be used in the

definition of a statistical test. 1
4Ik on the other hand is a valid covariance matrix, and

allows the interpretation of tN as a test on the distance of Σ̂ from the maximum entropy

case.

The significance value for tN is

α̂N � PptN ¥ tossN q (5.25)

as the hypothesis in Equation 5.12 becomes

H0 : |||Σ� 1

4
Ik|||2F � 0 H1 : |||Σ� 1

4
Ik|||2F ¡ 0. (5.26)

Unlike the previous statistics, Nagao’s test is not significantly affected by the bounds

on the squared Frobenius matrix norm, to the point that the finite sample sample

83

bootstrap sample size

si
gn

ifi
ca

nc
e

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

W1
original

●

● ● ● ●

●

●

● ● ●

●

● ● ● ●

W2
original

50 100 150 200

● ● ● ● ●

●

● ● ● ●

●

● ● ● ●

W3
original

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

W1
adjusted

50 100 150 200

●

●
● ● ●

●

●

● ● ●

●

●
● ● ●

W2
adjusted

0.0

0.2

0.4

0.6

0.8

1.0

● ● ● ● ●

●

● ● ● ●

●

●
● ● ●

W3
adjusted

Figure 5.2: Asymptotic significance values of tT (green), tG2
(blue) and tN (violet) for Σ1, Σ2

and Σ3 from Table 5.1.

correction

α̃N � P ptN ¥ tossN | tG1 P r0, tmaxN sq � PptN ¥ tossN q � PptN ¡ tmaxN q
PptN ¤ tmaxN q (5.27)

is not appreciably better than the raw significance value.

Example 5.1. Consider again the multivariate Bernoulli distributions W1, W2, W3

and their covariance matrices Σ1, Σ2, Σ3 from Example 4.2. The respective asymptotic

significance values for the statistics tT , tG1 and tN are reported in Table 5.1.

5.2.2 Monte Carlo Inference and Parametric Bootstrap

Another approach to compute the significance values of the statistics VART pΣq,
VARGpΣq and VARN pΣq for the set of hypothesis in Equation 5.12 is to apply parametric

bootstrap again.

The null multivariate Bernoulli distribution has a diagonal covariance matrix, so its

components are uncorrelated. According to Theorem 4.1 they are also independent, so

the null distribution is completely specified by its marginals. Therefore, it is possible

(and indeed quite easy) to generate observations from the null distribution and use them

to estimate the significance value of the statistics VART pΣq, VARGpΣq and VARN pΣq

84

VART pΣq
10 20 50 100 200

Σ1 0.569655 0.457109 0.129242 0.017416 0.000334
Σ2 0.016834 0.000205 0 0 0
Σ3 0.016834 0.000205 0 0 0

VARGpΣq
Σ1 0.784102 0.512839 0.14788 0.013678 0.000094
Σ2 0.063548 0.000761 0 0 0
Σ3 0.005909 0.000008 0 0 0

VARN pΣq
Σ1 0.743797 0.568819 0.239397 0.096544 0.019633
Σ2 0.196996 0.037772 0.001018 0.000005 0
Σ3 0.018292 0.000355 0 0 0

Table 5.2: Bootstrap significance values from parametric bootstrap for Σ1, Σ2 and Σ3.

defined in Section 5.1:

1. Compute the value of test statistic T on the original covariance matrix Σ.

2. For r � 1, 2, . . . , R:

(a) generate m vectors of k random samples from a Berp1
2q distribution;

(b) compute their covariance matrix Σ�
r ;

(c) compute T �r from Σ�
r .

3. Compute the Monte Carlo significance value as

α̂R � 1

R

Ŗ

r�1

1tx¥T upT �r q. (5.28)

This approach has two important advantages over the parametric tests defined in

Section 5.2.1:

• the test statistic is evaluated against the null distribution instead of its asymptotic

approximation, thus removing any distortion caused by lack of convergence (which

can be quite slow and problematic for large numbers of edges).

• each simulation r has a lower computational cost than the equivalent application

of the structure learning algorithm to a bootstrap sample. Therefore Monte

85

bootstrap sample size

si
gn

ifi
ca

nc
e

0.0

0.2

0.4

0.6

0.8

50 100 150 200

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

W1

50 100 150 200

●

● ● ● ●

●

●
● ● ●

●
● ● ● ●

W2

50 100 150 200

● ● ● ● ●
●

● ● ● ●
●

● ● ● ●

W3

Figure 5.3: Monte Carlo significance values for the total variance (green), the generalized
variance (blue) and the squared Frobenius matrix norm (violet) from Table 5.2.

Carlo tests can achieve a good precision with a smaller number of bootstrapped

networks, as there is no need to approach the asymptotic null distribution. This in

turn allows its application to larger problems while still maintaining a reasonable

performance.

Example 5.2. Consider the multivariate Bernoulli distributions W1, W2, W3 from

Example 4.2 and Example 5.1 one last time. The corresponding significance values for

the three normalized statistics VART pΣq, VARGpΣq and VARN pΣq are reported in Table

5.2 for various sizes of the bootstrap samples pm � 10, 20, 50, 100, 200q. Each one have

been computed from R � 106 covariance matrices generated from the null distribution.

5.3 Regularized Estimators and Statistics for Undirected

Graphs

The analysis of the covariance matrix of a network structure is a high-dimensional

problem in all but the most trivial cases. If a graph has n nodes, there are 1
2npn� 1q

possible edges; so the number of edges we may be interested in grows quadratically in

the number of nodes, which is itself large in many practical applications of graphical

models. In this setting, the maximum likelihood estimator Σ̂ of the covariance matrix

is known to be inefficient and displays a considerable instability for most reasonable,

finite sample sizes. All the optimality result concerning Σ̂ are asymptotic in nature,

and therefore they is no guarantee that they hold for finite samples.

These issues can be explained as a consequence of the inadmissibility of the maximum

86

likelihood estimator for the mean of multivariate distributions discovered by Stein

(1956) and investigated by James and Stein (1961). A solution is provided in the form

of a regularized estimator Σ̃, which includes some bias in order to increase the overall

performance of the estimator. This is achieved by defining Σ̃ as a linear combination of

the maximum likelihood estimator Σ̂ and a target distribution with covariance matrix

T , which is usually chosen to be much more regular:

Σ̃ � λT � p1� λqΣ̂, λ P r0, 1s. (5.29)

Such an estimator is called a shrinkage estimator, because Σ̂ is shrunk towards T in

the space of the covariance matrices; λ is likewise called the shrinkage coefficient.

A closed-form estimator for λ has been derived by Ledoit and Wolf (2003) as the

value that minimizes the mean squared error of Σ̃; it has the form

λ� �
°k
i�1

°k
j�1 VARpσ̂ijq � COVpσ̂ij , tijq � Biaspσ̂ijqptij � σ̂ijq°k

i�1

°k
j�1ptij � σ̂ijq2

(5.30)

where T � rtijs, i, j � 1, . . . , k. Since the estimators for the variances and the covari-

ances are unbiased, this expression reduces to

λ� �
°k
i�1

°k
j�1 VARpσ̂ijq � COVpσ̂ij , tijq°k
i�1

°k
j�1ptij � σ̂ijq2

. (5.31)

The resulting estimator Σ̃ it is always positive definite (as long as T is) and dominates

Σ̂ in terms of mean square error. Furthermore, the good properties of λ� do not require

any distributional assumption beyond the existence of the quantities in the right hand

of Equation 5.30.

Nonetheless, the form of the covariance matrix T must be chosen with some care

according to the nature of the problem at hand. Two sensible choices for a multivariate

Bernoulli distribution are the maximum entropy covariance matrix 1
4Ik and the diagonal

matrix used in Schäfer and Strimmer (2005). The latter is called the “diagonal, unequal

variance” target, and is defined as the diagonal matrix built from Σ̂ by setting all non-

diagonal elements to zero. We will denote it as diagpΣ̂q. Both these choices are positive

definite and have a very simple structure. Furthermore, they are valid covariance

matrices for a multivariate Bernoulli, and always result in valid shrunk covariance

matrices due to the convexity of the region D introduced in Section 4.2.2 (see Figure

5.4).

87

Figure 5.4: Changes in the eigenvalues of the covariance matrices Σ1, Σ2 and Σ3 after shrinking
towards the maximum entropy covariance matrix (on the left) and towards the “diagonal,
unequal variance” target (on the right).

In the first case, the shrunk covariance matrix Σ̃ � rσ̃ijs assumes the form

σ̃ij �
$&
%

1

4
λ� � p1� λ�qpp̂i � p̂2

i q if i � j

p1� λ�qpp̂ij � p̂ip̂jq if i � j
. (5.32)

If we denote the eigenvalues of Σ̂ with si and those of Σ̃ with s̃i (to avoid confusion

with the shrinkage coefficient), we can rewrite the descriptive statistics introduced in

Section 5.1 as:

VART pΣ̃q � tr

�
λ�

1

4
Ik � p1� λ�qΣ̂

�

ķ

i�1

�
1

4
λ� � p1� λ�qsi

�
�

ķ

i�1

s̃i, (5.33)

VARGpΣ̃q � det

�
λ�

1

4
Ik � p1� λ�qΣ̂

�

k¹
i�1

�
1

4
λ� � p1� λ�qsi

�
�

k¹
i�1

s̃i, (5.34)

VARN pΣ̃q � |||p1� λ�qΣ̂� k � λ�

4
Ik|||2F � p1� λ�q2

ķ

i�1

�
si � 1

4
� k � λ�

1� λ�

2

, (5.35)

where s̃i � 1
4λ

��p1�λ�qsi. Hypothesis tests can be similarly rewritten. The shrinkage

coefficient can be estimated as

λ� �
°k
i�1

°
j�i VARpp̂ij � p̂ip̂jq �

°k
i�1 VARpp̂i � p̂2

i q°k
i�1

°
j�ipp̂ij � p̂ip̂jq2 �

°k
i�1pp̂i � p̂2

i � 1
4q2

, (5.36)

88

and results in a closed-form expression which is easily computable from the reduced

parameter collection p̃. The required algebraic computations are straightforward but

tedious, and are therefore detailed in Appendix B.

If we choose the “diagonal, unequal variance” target instead, the shrunk covariance

matrix assumes the form

σ̃ij �
#
p̂i � p̂2

i if i � j

p1� λ�qpp̂ij � p̂ip̂jq if i � j
, (5.37)

and the estimator for the shrinkage coefficient reduces to

λ� �
°k
i�1

°
j�i VARpp̂ij � p̂ip̂jq � 2

°k
i�1 VARpp̂i � p̂2

i q°k
i�1

°
j�ipp̂ij � p̂ip̂jq2

. (5.38)

The derivation and the closed-form expression of λ� are again reported in Appendix

B. The effects of the shrinkage on VART pΣ̃q, VARGpΣ̃q and VARN pΣ̃q are not as easily

expressed as for the previous target, with the notable exception of the total variance:

VART pΣ̃q � VART pΣ̂q, (5.39)

VARGpΣ̃q � det
�
λ� diagpΣ̂q � p1� λ�qΣ̂

	
, (5.40)

VARN pΣ̃q � |||p1� λ�qΣ̂� λ� diagpΣ̂q � k

4
Ik|||2F . (5.41)

5.4 Measures of Variability for Directed Acyclic Graphs

Most of the results presented in the sections above can be derived in a similar way

for directed acyclic graphs. However, the behaviour of the multivariate Trinomial

distribution in the maximum entropy case and the properties of Bayesian network

structure learning algorithms make the interpretation of both descriptive statistics and

hypothesis tests particularly difficult.

Both total variance and generalized variance are again bounded due to the inequalities

in Equation 4.49; if we are considering k arcs then

0 ¤ VART pΣq ¤ k and 0 ¤ VARGpΣq ¤ 1. (5.42)

89

Therefore, we can define their normalized transforms as

VART pΣq � 1

k
VART pΣq and VARGpΣq � VARGpΣq. (5.43)

They reach the respective maxima for Σ � Ik, that is, when all marginal variances

are at their maximum and arcs are uncorrelated. Generalized variance is again strictly

convex (Ik is the only global maximum), while total variance reaches its maximum for

any covariance matrix with diagonal elements equal to 1 regardless of the correlation

structure between the arcs. Neither VART pΣq nor VARGpΣq reach the respective max-

ima in the maximum entropy case, because the covariance matrix is very different from

Ik (see Section 4.4.2); in that case we have that VART pΣq � k
2 and VARGpΣq Æ 1

2k
due

to Hadamard’s theorem.

This makes the interpretation of both VART pΣq and VARGpΣq problematic, because

the minimum entropy case coincides with their lower bound but the maximum entropy

case is not related to their upper bound. Even though it is possible to define a trans-

formation of these statistics such that interpretation is again straightforward, it is not

clear how such a transformation should be chosen (in terms of smoothness, continuity,

etc.). Furthermore, the fact that arcs do not display their maximum (marginal) vari-

ability in the maximum entropy case raises the question of whether we should be more

interested in a maximum variance case instead.

It is important to note that VART pΣq and VARGpΣq can still be interpreted as spread

measures in the usual way, since the minimum entropy case is also a minimum variance

case (i.e. Σ � O). However, this fact is not useful in the context of this thesis. The

reason is that in the maximum variance case all arcs appear in all the bootstrapped

networks, so VART pΣq and VARGpΣq provide a good measure of the sparseness of the

network structure but not of its variability. In other words, they associate high values

of the statistic to dense networks, which are not necessarily the ones displaying the

highest variability.

The squared Frobenius matrix norm is again defined using the covariance matrix

associated with the maximum entropy case, denoted here as Σmaxent, as follows:

VARN pΣq � |||Σ� kΣmaxent|||2F . (5.44)

The normalized transform is guaranteed to exist because the space of the eigenvalues

90

of Σ is closed and bounded (see Theorem 4.8); it is defined again as

VARN pΣq � maxΣ VARN pΣq � VARN pΣq
maxΣ VARN pΣq �minΣ VARN pΣq (5.45)

and associates high levels of the statistic to unstable network structures. The biggest

issue of both VARN pΣq and VARN pΣq is that their estimation is affected by two kinds

of errors:

1. the approximations derived in Theorem 4.12, which are used in the computation

of the diagonal elements of Σmaxent;

2. the approximate Monte Carlo estimation of the non-null covariances, which is

subject to the natural instability of parameter estimation in high-dimensional

settings.

Both these approximations are required due to the lack of a complete characterization

Σmaxent, and have the potential to degrade the quality of inferential procedures. Note

that VART pΣq and VARGpΣq and their normalized transforms are unaffected by this

problem because they do not depend on the form of Σmaxent.

Another important limitation in the interpretation of the quantities introduced in

this section follows from the fact that most Bayesian network structure learning al-

gorithms used in modern literature are score equivalent. The frequent inability of

such algorithms to distinguish between the two possible directions of an arc introduces

additional variability and possibly bias in the analysis. Consider for example the net-

works learned from the learning.test data set in Section 3.3.4. The direction of

the arc between the nodes A and B was set to A Ñ B by the Hill-Climbing algorithm

due to its inability to deal with partially directed graphs. This choice is completely

implementation-dependent, and has no statistical or probabilistic reason; A Ñ B is

preferred over B Ñ A because of the order of the variables in the data frame the net-

work was learned from. Even when resampling from the original data set, that order

is usually preserved, often leading to completely wrong conclusions about the relative

probabilities of the two directions. Such potential for bias is present in all classes of

structure learning algorithms illustrated in Section 2.2, and the errors it causes are

likely to propagate to neighbouring arcs due to the acyclicity constraint.

This issue raises a second, fundamental question in the analysis of the structures

of directed acyclic graphs, namely whether transforming them to undirected graphs

(thus ignoring the direction of the arcs) may substantially increase the reliability of the

results. This can be achieved by considering either the skeleton of the graph (which

91

amounts to applying an absolute value transform, as detailed in Section 4.3.1 and Sec-

tion 4.4.2) or the corresponding moral graph. The latter preserves all the information

present in the original network structure and completely solves the problem of score

equivalence, because Bayesian networks encoding the same probability distribution

have the same moral graph. Furthermore, even though the link between the multi-

variate Trinomial and the multivariate Bernoulli is not as strong as for the skeleton,

inference is still much easier because the limiting cases are completely characterized.

On the other hand, using the skeleton allows a direct application of the decompositions

presented in Equation 4.46 and Equation 4.47 for the variance and the covariance. The

link provided by the application of the absolute value transformation may allow the

derivation of further results, which may still result in a meaningful analysis despite the

loss of part of the information present in the original network.

92

Chapter 6

Comparing Different Learning

Strategies

In this chapter we will study how the use of different classes of conditional indepen-

dence tests affects the performance of Bayesian network structure learning algorithms.

To that end, we will consider the permutation and shrinkage tests implemented in

bnlearn as used in the Grow-Shrink and Max-Min Hill-Climbing algorithms. The

Bayesian networks learned with these tests will be studied first with the techniques

usually found in literature, and then with the variability measures introduced in this

thesis.

6.1 Conditional Independence Tests and Network Struc-

tures

In literature there are several studies on the performance of Bayesian network struc-

ture learning algorithms; one of the most extensive performed in recent years is pre-

sented in Tsamardinos et al. (2006). The focus of these studies is almost always the

heuristics learning algorithms are based on, i.e. the maximization algorithms used in

score-based algorithms or the techniques for learning the neighbourhood of each node in

constraint-based algorithms. The influence of other components of the overall learning

strategy, such as the conditional independence tests (and the associated type I error

threshold) or the network scores (and the associated parameters, such as the equivalent

sample size), is usually not investigated.

However, limiting such studies to the performance of the heuristics poses serious

93

doubts on their conclusions. First of all, the decisions made by the heuristics are

based on the values of the statistical criteria they use to extract information from the

data. Therefore, it is important to choose a conditional independence test or a network

score presenting a good behaviour for the data at hand and to tune it appropriately.

Furthermore, the task the Bayesian network will be used for should also be taken

in consideration; for example, a simple structure (such as the naive Bayes classifier

presented in Section 3.4.2) may be very good for prediction but useless for assessing

the dependence structure of the data and the causal effects among the variables.

For this reason, we will now investigate the behaviour of permutation conditional

independence tests and tests based on shrinkage estimators. These two classes of tests

are usually not considered in literature, where the asymptotic χ2 tests based on Pear-

son’s X2 and the mutual information are the de facto standard. In particular, we

will study the permutation Pearson’s X2 test and the permutation mutual information

test described in Edwards (2000), and the shrinkage test based on the estimator for

the mutual information presented in Hausser and Strimmer (2009). Five performance

indicators will be taken into consideration:

• the posterior density of the network (i.e. the BDe score) for the data it was

learned from, as a measure of goodness of fit. The equivalent sample size will be

set to 10 as suggested in Koller and Friedman (2009).

• the BIC score of the network for the data it was learned from, again as a measure

of goodness of fit.

• the posterior density of the network for a new data set, as a measure of how well

the network generalizes to new data.

• the BIC score of the network for a new data set, again as a measure of how well

the network generalizes to new data.

• the Structural Hamming Distance (SHD) between the learned and the true struc-

ture of the network, as a measure of the quality of the learned dependence struc-

ture (and of the corresponding set of causal effects under the assumptions stated

in Section 2.3).

These indicators will be estimated for each test using the bnlearn R package as follows:

1. a sample is generated from the true probability distribution of the ALARM net-

work from Beinlich et al. (1989).

94

2. a network structure is learned with the Max-Min Hill-Climbing algorithm using

the BDe score and one of the conditional independence tests under investigation.

Two thresholds are considered for the type I error: 0.05 and 0.01. Since the results

are very similar for both values, they are reported only for 0.05 for brevity.

3. a second network structure is learned from the same data with the asymptotic,

parametric test based either on Pearson’s X2 or on the maximum likelihood es-

timator for the mutual information, depending on which test was used in the

previous step.

4. the previous two steps are repeated using the BIC score instead of BDe.

5. the relevant performance indicators are computed for each pair of network struc-

tures, and the differences are standardized to express the relative difference over

the values obtained with the asymptotic tests. In particular, BDe will be only

considered for networks learned in step 2 and BIC for networks learned in step 4.

These steps will be repeated 50 times for each sample size. The data set needed

to assess how well the network generalizes to new data is generated again from the

true probability structure of the ALARM network and contains 20000 observations.

The parameters of the network, which are the elements of the conditional probability

tables associated with the nodes of the networks, are estimated using the corresponding

empirical frequencies.

6.1.1 Permutation Tests

Nonparametric conditional independence tests, and permutation tests in particular,

provide a feasible alternative to the corresponding parametric tests in a wide range of

situations. Their main advantage is that they do not require a large sample size or par-

ticular distributional assumptions to perform well, because they operate conditioning

on the available data (Pesarin and Salmaso, 2010). Therefore, they perform better than

the parametric tests usually found in literature, because they are not limited by the

rate of convergence to the respective asymptotic distributions. However, the computer

time required by the generation of the permutations of the data and by the repeated

evaluation of the test statistic have prevented their widespread use in many settings in

which high-dimensional problems are the norm.

The effects of these properties of the permutation Pearson’s X2 and the permutation

mutual information tests are shown in Figure 6.1 and Figure 6.2. First, we can clearly

95

BIC improvement (learned, MI)

sample size

%
 im

pr
ov

em
en

t

0.00

0.05

0.10

200 500 1000 5000

●

● ●

●

●

●

●
●
●

●●

BIC improvement (learned, X2)

sample size

%
 im

pr
ov

em
en

t

−0.04

−0.02

0.00

0.02

0.04

200 500 1000 5000

●
●

●

●

●

●

BIC improvement (predicted, MI)

sample size

%
 im

pr
ov

em
en

t

0.00

0.05

0.10

200 500 1000 5000

●

● ●
●

●

●

●●

●

BIC improvement (predicted, X2)

sample size

%
 im

pr
ov

em
en

t

−0.05

0.00

0.05

0.10

200 500 1000 5000

● ●
●

●

●

●

BDe improvement (learned, MI)

sample size

%
 im

pr
ov

em
en

t

0.00

0.05

0.10

0.15

200 500 1000 5000

●

● ●
●

●

●

●

●
●
●●

●

●●

BDe improvement (learned, X2)

sample size

%
 im

pr
ov

em
en

t

−0.05

0.00

0.05

0.10

200 500 1000 5000

●
●

●
●

●

●

BDe improvement (predicted, MI)

sample size

%
 im

pr
ov

em
en

t

0.00

0.05

0.10

200 500 1000 5000

●

● ●
●

●

●

●●

●●

BDe improvement (predicted, X2)

sample size

%
 im

pr
ov

em
en

t

−0.05

0.00

0.05

0.10

200 500 1000 5000

● ●
●

●

●

●

Figure 6.1: Improvements in Bayesian network structure learning when using permutation
mutual information (on the left) and Pearson’s X2 (on the right) tests. The black dot in each
boxplot represents the median.

96

SHD improvement (MI)

sample size

%
 im

pr
ov

em
en

t

−0.2

0.0

0.2

0.4

200 500 1000 5000

● ● ●

●

SHD improvement (X2)

sample size

%
 im

pr
ov

em
en

t

−0.4

−0.2

0.0

0.2

200 500 1000 5000

●
●

●

●

●

●

●●

●

Figure 6.2: Differences in the Structural Hamming Distance when using permutation mutual
information (on the left) and Pearson’s X2 (on the right) tests. The black dot in each boxplot
represents the median.

see from the boxplots in Figure 6.1 that the use of permutation tests results in network

structures with higher scores for all the considered sample sizes (200, 500, 1000 and

5000). This is also true when considering the new data set, meaning that the net-

work structures learned with these tests are better for predicting the behaviour of new

samples. As expected, the improvements in the BIC and BDe scores are particularly

significant for low sample sizes; the probability structure of the ALARM network has

509 parameters, which means that the ratios between the number of observations and

the number of parameters are 0.3929, 0.9823, 1.9646 and 9.8231 respectively.

It is also interesting to note that, even though the performance of parametric tests

improves with the sample size, both permutation tests appear to improve at a faster

rate. In fact, in all plots in Figure 6.1 the relative improvement for samples of size 5000

is greater than the corresponding improvement for samples of size 2000, regardless of

the score we are considering or the data set it is computed from.

On the other hand, the network structures learned with the permutation tests con-

sidered in this section are often not as close to the true network structure as the ones

learned with the corresponding parametric tests. This is can be clearly seen from the

boxplots in Figure 6.2, which show that in the majority of simulations the relative

difference between the SHD values is negative (i.e. the SHD associated with the para-

metric test is smaller than the SHD associated with the permutation test). Permutation

tests outperform parametric tests only for samples of size 5000.

The comparatively poor performance of permutation tests in terms of SHD can be

attributed to the conditioning on the observed sample that characterizes them. Most

97

of the samples considered in this analysis are too small to provide an adequate repre-

sentation of the true probability structure of the ALARM network, as evidenced by the

ratios between their sample sizes and the number of parameters. Therefore, the net-

work structures learned with permutation tests from these samples are able to capture

only part of the true dependence structure. The arcs that are most likely to be missed,

however, are those that represent the weakest dependence relationships; otherwise the

networks would not be able to fit new data so well.

In conclusion, permutation tests result in better network structures than the corre-

sponding parametric tests, both in terms of goodness of fit and in how well the networks

are able to generalize to new data. However, if the focus of the analysis is the structure

of the network itself (such as when the Bayesian network is considered as a causal

model) parametric tests may be preferable for small samples.

6.1.2 Tests Based on Shrinkage Estimators

The test based on the shrinkage estimator for the mutual information has a com-

pletely different behaviour than the permutation tests covered above.

As expected from a test based on a regularized estimator, the networks learned

using shrinkage tests do not fit the data as well as the networks learned with the

corresponding maximum likelihood tests. This can be clearly seen from the boxplots

in Figure 6.3. The relative differences in the BIC and BDe scores are almost never

positive for either the data the networks have been learned from or the new data, in

particular for samples of size 10 and 20. Such small samples are most likely to result

in sparse contingency tables, and therefore in high values of the shrinkage coefficient,

as soon as a few conditioning variables are included in the tests. Larger samples are

less affected by the regularization of the shrinkage estimator, because the shrinkage

coefficient converges to zero as the number of observations diverges (Ledoit and Wolf,

2003). This means that for larger samples (i.e. 100, 150 and 200) the behaviour of

the shrinkage test for the mutual information approaches the one of the classic mutual

information test, as can be seen from the increasingly small difference between the two

in terms of BIC and BDe scores.

An important side effect of the regularization performed by the shrinkage estimator

is the reduction of the structural distance from the true network structure for small

samples. We can see from Figure 6.4 that the shrinkage test outperforms the test

based on the maximum likelihood estimator; there is a systematic improvement for

sample sizes 10, 20 and 50 (i.e. SHD is smaller for the shrinkage test). Again as

98

BIC improvement (learned)

sample size

%
 im

pr
ov

em
en

t

−0.10

−0.05

0.00

10 20 50 100 150 200

●

●
● ● ● ●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●●
●●●●●

●

●●●●●
●
●
●●●

●

●●
●
●

●

●
●
●●

●

BDe improvement (learned)

sample size

%
 im

pr
ov

em
en

t

−0.06

−0.04

−0.02

0.00

0.02

0.04

10 20 50 100 150 200

●

●
● ● ● ●

●

●

●●
●●●

●

●

●

●

●●●●●●●

●

●
●●●●

●

●

●
●●

●
●
●

●

●

●

●

●
●●

●

BIC improvement (predicted)

sample size

%
 im

pr
ov

em
en

t

−0.10

−0.05

0.00

0.05

10 20 50 100 150 200

●

●

● ● ● ●

●

●

●●

●
●

●●

●

●

●

●

●

●

●●●●●●●

●

●
●●●●

●
●
●●●

●

●●

●

●

●

●

●
●●

●

BDe improvement (predicted)

sample size

%
 im

pr
ov

em
en

t

−0.10

−0.05

0.00

0.05

10 20 50 100 150 200

●

●

● ● ● ●

●

●

●●

●
●

●●

●

●

●

●

●

●

●●●●●●●

●

●
●●●●

●
●
●●●

●

●●

●

●

●

●

●
●●

●

Figure 6.3: Improvements in Bayesian network structure learning when using the shrinkage
estimator for the mutual information. The black dot in each boxplot represents the median.

SHD improvement (shrinkage)

sample size

%
 im

pr
ov

em
en

t

−0.05

0.00

0.05

0.10

10 20 50 100 150 200

●

● ●

● ● ●

●● ●● ●

●

●●

●

●

●

●

●●●●●●

●

●

●●

●

●

●

●●●●

Figure 6.4: Differences in the Structural Hamming Distance when using the shrinkage estimator
for the mutual information. The black dot in each boxplot represents the median.

99

the sample size increases the behaviour of the shrinkage test approaches the one of

the corresponding maximum likelihood test. These simulations confirm the results

produced with shrinkage tests for many “small n, large p” problems, such as in Schäfer

and Strimmer (2005) and Krämer et al. (2009), which have led to a widespread use of

shrinkage tests in biology and genetics.

6.2 Learning Strategies and Structure Variability

We will now look again at the results presented in the previous section and use the

measures of variability from Chapter 5 to further support some of the considerations

made therein. Due to the limitations in the analysis of directed acyclic graphs covered in

Section 5.4, we will use the skeleton of the Bayesian networks learned from the ALARM

data in combination with the descriptive statistics and the tests for the variability of

undirected graphs as implemented in bnlearn.

6.2.1 Descriptive Statistics

Limiting ourselves to exploratory data analysis, we can use the descriptive statistics

introduced in Section 5.1 to study how the variability of the network structure varies

with the sample size. In particular, we can assess the influence of each component of the

overall learning strategy, including but not limited to the structure learning algorithm,

the network score, the conditional independence test and the respective parameters.

We will take into consideration the total variance and the squared Frobenius matrix

norm in their normalized forms, VART pΣq and VARN pΣq. We will not consider the

normalized generalized variance, VARGpΣq, due to the arbitrariness implied by the

choice of an algorithm to reduce Σ to a full rank matrix. The covariance matrix Σ

will be estimated using the maximum likelihood estimator Σ̂. Furthermore, only the

results for the total variance will be discussed in detail due to the similarity between

the behaviour of VART pΣq and VARN pΣq.
The values of VART pΣq for the learning strategy used as a reference in the previous

section (Max-Min Hill-Climbing, maximum likelihood estimator for the mutual infor-

mation with α � 0.05, BIC score, 20 runs for each sample size) are reported in Figure

6.5. As expected, the variability of the network structure decreases as the sample size

diverges. This can be attributed, at least in part, to the consistency of the BIC score

proved by Gámez et al. (2010). We can also see that the network structure is more

stable for very small samples (10 and 20 observations) than for medium-sized samples

100

MMHC, mutual information and BIC

sample size

V
A

R
T
(Σ

)

0.02

0.03

0.04

0.05

0.06

10 20 50 100 150 200 500 1000 5000

●

●

●

●

●
●

●

●

●

●

●

●

●

●

MMHC, Pearson's X2 and BIC

sample size

V
A

R
T
(Σ

)

0.01

0.02

0.03

0.04

0.05

0.06

10 20 50 100 150 200 500 1000 5000

●

●

●
●

●

●
●

●

●

●

●

Grow−Shrink, mutual information and BIC

sample size

V
A

R
T
(Σ

)

0.02

0.04

0.06

0.08

0.10

10 20 50 100 150 200 500 1000 5000

●

●

●

●
●

●
●

●
●

●

●

●
●

Figure 6.5: Normalized total variance for different sample sizes and three different learning
strategies. The black dot in each boxplot represents the median.

101

Maximum likelihood and shrinkage tests for MI

sample size

V
A

R
N
(Σ

)

0.000

0.005

0.010

0.015

0.020

10 20 50 100 150 200 500 1000 5000

●

●
● ●

● ●

● ● ●

●

●

●

●●

Figure 6.6: Difference in normalized total variance between the maximum likelihood and the
shrinkage estimator for the mutual information. The black dot in each boxplot represents the
median.

(50 to 200 observations); the highest variability is observed for sample size 50. The

networks learned from these samples are almost all empty (i.e. they do not have any

arc), and are therefore very stable but not very informative.

The last plot in Figure 6.5 shows the normalized total variance for the Grow-Shrink

algorithm, which serves as a useful term of comparison. We can see that the variability

of the network structure does not appear to decrease as the sample size increases,

or at least it does so slowly that the trend is not discernible from the plot. This

is clearly an undesirable behaviour, and is consistent with the claims that constraint-

based algorithms are relatively unstable compared to score-based and hybrid algorithms

(Spirtes et al., 2000). However, the normalized total variance never exceeds 0.10, which

seems to imply that the performance of Grow-Shrink is still acceptable.

The difference in normalized total variance between the tests based on the maxi-

mum likelihood and the shrinkage estimator for the mutual information are shown in

Figure 6.6. We can see that, as in Section 6.1.2, the shrinkage test provides a better

performance than the classic parametric test for all the sample sizes considered in the

analysis – i.e. the normalized total variance is always less than the normalized total

variance computed from the sample samples using the test based on the maximum like-

102

sample size

p−
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

680 685 690 695 700 705 710

● ● ● ●

●

● ●

●●

●

Mutual Information

680 685 690 695 700 705 710

● ● ●

●

● ● ●

●
●

●●

●

Shrinkage Estimator

680 685 690 695 700 705 710

● ● ●

●

● ● ●

●

●

Pearson's χ2

Figure 6.7: Significance values for three different conditional independence tests (maximum
likelihood and shrinkage estimators of mutual information and Pearson’s χ2) used with the
same structure learning algorithm (Grow-Shrink). The black dot in each boxplot represents
the median.

lihood estimator. The difference between the two tests vanishes again as the sample

size grows, for the same reasons stated above.

6.2.2 Testing Against the Maximum Entropy Distribution

Consider now the tests introduced in Section 5.2. In particular, we will use them

to determine the minimum sample size required by each strategy to detect reliably at

least part of the dependence structure of the data.

First we will compare the performance of the Grow-Shrink algorithm for three dif-

ferent conditional independence tests: the asymptotic test based on the maximum

likelihood estimator for the mutual information, the corresponding shrinkage test and

Pearson’s X2 test. The thresholds α � 0.01 and α � 0.05 for type I error will be

used for each conditional independence test, and network variability will be assessed

with the Monte Carlo test for the squared Frobenius matrix norm. As in the previous

section, the results of the simulations are very similar; therefore, we will discuss only

the results for α � 0.05 for brevity.

The learning algorithm has been applied to samples of several sizes between 10 and

5000 (20 times for each size) from the ALARM network; only the relevant ones, 680,

685, 690, 695, 700, 705 and 710, are shown in Figure 6.7. All the tests considered in the

analysis start producing relatively stable network structures – i.e. the null hypothesis

corresponding to the maximum entropy case is rejected – at sample sizes 695 and 700.

103

sample size

p−
va

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

670 675 680 685 690 695 700 705 710

● ● ●

●

●
● ● ● ●

●

●

Tabu Search

670 675 680 685 690 695 700 705 710

● ● ● ● ● ●

●

● ●

●●

●

Grow−Shrink

670 675 680 685 690 695 700 705 710

● ●

●

● ● ● ● ● ●

●

Max−Min Hill Climbing

Figure 6.8: Significance values for three different structure learning algorithms (Grow-Shrink,
tabu search and Max-Min Hill-Climbing) using the same conditional independence tests and
network scores. The black dot in each boxplot represents the median.

All combinations of structure learning algorithms, conditional independence tests and

values of α are not able to capture anything but noise from smaller samples. Pearson’s

X2 test appears to perform slightly better than mutual information, as documented in

Agresti (2002) when dealing with sparse contingency tables. This is also true for the

shrinkage test. However, the difference among the three sets of significance values is

very small.

It is also interesting to compare three different learning algorithms using the same

conditional independence tests and network scores:

• tabu search (a score-based algorithm), combined with a BIC score;

• Grow-Shrink (a constraint-based algorithm), combined with the asymptotic χ2

test for the mutual information and α � 0.05;

• Max-Min Hill-Climbing (a hybrid algorithm), combined with a BIC score and the

asymptotic mutual information test.

Again only the significance values for the relevant sample sizes are reported in Figure

6.8; in this case the differences between the learning strategies are more pronounced.

The network structures learned with the Max-Min Hill-Climbing algorithm, which is

one of the top performers up to date for large networks, display less variability than

the ones learned with either tabu search or Grow-Shrink at the same sample size. In

particular the difference between Max-Min Hill-Climbing and Grow-Shrink confirms

104

again the results presented in Tsamardinos et al. (2006) and the relative instability

of constraint-based algorithms at small sample sizes. Furthermore, if we compare the

significance values in Figure 6.8 with the ones in Figure 6.7 we can see that a choosing

a good structure learning algorithm may be more important than choosing a good

statistical test or network score for particularly small samples. From this we can argue

that the contribution of the heuristic the former is based on to the stability of the

network is determinant, as it offsets the errors made by the latter.

105

Chapter 7

Conclusions

In this thesis we proposed some new methods for the analysis of the structure of

Bayesian and Markov networks, extending the bootstrap-based approach introduced

by Friedman et al. (1999a). These methods focus on the multivariate variability of the

network structure and are based on the univariate measures of multivariate variability

present in classic multivariate statistics (Mardia et al., 1979; Muirhead, 1982; Bilodeau

and Brenner, 1999).

Both descriptive statistics and hypothesis tests have been proposed and their prop-

erties studied under suitable probabilistic assumptions on the arcs (or edges) of the

network (Scutari, 2009). Directed acyclic graphs (such as those representing Bayesian

networks) and undirected graphs (such as Markov networks or the skeleton of Bayesian

networks) have been modelled using the multivariate extensions of the Bernoulli and

Trinomial distributions (Krummenauer, 1998b); each component have been associated

with an arc or an edge. These assumptions represent the natural probabilistic model

for these network structures; they do not impose any assumption that is not already

implicit in the nature of the bootstrapped network structures themselves. Furthermore,

inference on these probabilistic models requires only few simple, closed-form parameter

estimators which can be computed as in Friedman et al. (1999a).

The use of these probabilistic models allowed the derivation of several bounds and

exact results concerning the first two order of moments of both directed and undirected

network structures. This in turn allowed the derivation of bounds for the descriptive

statistics, giving them a clear interpretation as variability measures. The null distri-

bution of hypothesis tests concerning the stability of the network structure have been

similarly derived, and both Monte Carlo and asymptotic approaches have been studied.

To complement these theoretical results and to examine the behaviour of the statistics

107

introduced in this thesis we implemented the bnlearn R package (Scutari, 2010a,b),

which is available from CRAN under the GPL license. bnlearn provides a free-software

implementation of several structure and parameter learning algorithms, including some

that were not publicly available under liberal licenses. In addition, several alternatives

for network scores and conditional independence tests not commonly used in literature

are also provided. bnlearn also explores the applications of parallel computing to

Bayesian networks, which will be covered by the author in a book by Springer (Na-

garajan et al., 2011) along with the other features of the package.

7.1 Open Problems

Further research on the analysis of the structure of Bayesian and Markov networks

will focus on the improvement of the statistics proposed in this thesis and the derivation

of further results on the multivariate Trinomial distribution, which lacks a complete

characterization of the second order moments in the maximum entropy case.

The latter topic is of particular interest. A complete characterization of both limiting

cases of the multivariate Trinomial distribution in terms of entropy may remove most

of the limitations in the analysis of the structure of Bayesian networks. In particu-

lar, transforming the network structure to an undirected graph (the skeleton or the

moral graph) would no longer be required. It is also important to note that such a

characterization may also lead to interesting results in the theory of random graphs.

As for the statistics proposed in this thesis, two topics merit further investigation.

First, it may be that the total variance, the generalized variance and the squared

Frobenius matrix norm are not the best measures for the variability of a network

structure. Their use in multivariate statistics is motivated largely by their properties

for the multivariate normal distribution; therefore it may be that some other statistic,

such as the ones developed for contingency tables or the analysis of variance, are more

effective while still having a clear interpretation. Second, the development of tests

for more complex hypotheses may help in answering some of the problems studied

in Friedman et al. (1999a). Testing the stability of the network using the maximum

entropy case as the null hypothesis is only a starting point for the development of tests

concerning the distance between network structures and the dependence between arcs,

which may result from the presence of a causal pathway.

108

Appendix A

Moments of the Multivariate

Trinomial Distribution

In this appendix we will list the first two moments of the Mutivariate Trinomial

distribution used to model the behaviour of the arcs in directed acyclic graphs. All

the quantities presented below have been computed by a complete enumeration of the

directed acyclic graphs of a given size (3, 4, 5, 6 and 7), and are therefore exact values

because they are estimated from the whole population. The number of graphs have

been computed using the recursive relation from Harary and Palmer (1973), and the

graphs themselves have been generated using the Markov Chain Monte Carlo algorithm

from Ide and Cozman (2002).

For each graph size is reported:

• the marginal distribution of each arc, including its expected value and its variance.

• the covariance between each possible pair of arcs, both those not incident on a

common node (aij , akl, i � j � k � l) and those incident on a common node.

• the joint probability table for each possible pair of arcs, both those not incident

on a common node and those incident on a common node.

A.1 Number of directed acyclic graphs of given size

Graph size 3 4 5 6 7

Number of graphs 25 543 29281 3781503 1138779265

109

A.2 Moments for the 3-dimensional distribution

Aij �

$''&
''%
� 1 with probability 0.32

0 with probability 0.36

1 with probability 0.32

EpAijq � 0

VARpAijq � 0.64

COVpAij , Aklq � 0.08

åij ÝÑaij ÐÝaij
åik 0.120000 0.120000 0.120000
ÝÑaik 0.120000 0.120000 0.080000
ÐÝaik 0.120000 0.080000 0.120000

arcs incident on a common node

A.3 Moments for the 4-dimensional distribution

Aij �

$''&
''%
� 1 with probability 0.309392

0 with probability 0.381215

1 with probability 0.309392

EpAijq � 0

VARpAijq � 0.618784

|COVpAij , Aklq| �
#

0 if i � j � k � l

0.081031 otherwise

åij ÝÑaij ÐÝaij
åkl 0.145488 0.117863 0.117863
ÝÑakl 0.117863 0.095764 0.095764
ÐÝakl 0.117863 0.095764 0.095764

arcs not incident on a common node

åij ÝÑaij ÐÝaij
åik 0.138121 0.121546 0.121546
ÝÑaik 0.121546 0.114180 0.073664
ÐÝaik 0.121546 0.073664 0.114180

arcs incident on a common node

110

A.4 Moments for the 5-dimensional distribution

Aij �

$''&
''%
� 1 with probability 0.301082

0 with probability 0.397834

1 with probability 0.301082

EpAijq � 0

VARpAijq � 0.602165

|COVpAij , Aklq| �
#

0 if i � j � k � l

0.081691 otherwise

åij ÝÑaij ÐÝaij
åkl 0.152761 0.122536 0.122536
ÝÑakl 0.122536 0.068850 0.068850
ÐÝakl 0.122536 0.068850 0.068850

arcs not incident on a common node

åij ÝÑaij ÐÝaij
åik 0.152761 0.122536 0.122536
ÝÑaik 0.122536 0.109695 0.068851
ÐÝaik 0.122536 0.068851 0.109695

arcs incident on a common node

A.5 Moments for the 6-dimensional distribution

Aij �

$''&
''%
� 1 with probability 0.294562

0 with probability 0.410875

1 with probability 0.294562

EpAijq � 0

VARpAijq � 0.589124

|COVpAij , Aklq| �
#

0 if i � j � k � l

0.082121 otherwise

åij ÝÑaij ÐÝaij
åkl 0.169041 0.120917 0.120917
ÝÑakl 0.120917 0.086822 0.086822
ÐÝakl 0.120917 0.086822 0.086822

arcs not incident on a common node

åij ÝÑaij ÐÝaij
åik 0.164510 0.123182 0.123182
ÝÑaik 0.123182 0.106220 0.065159
ÐÝaik 0.123182 0.065159 0.106220

arcs incident on a common node

111

A.6 Moments for the 7-dimensional distribution

Aij �

$''&
''%
� 1 with probability 0.289390

0 with probability 0.421220

1 with probability 0.289390

EpAijq � 0

VARpAijq � 0.578780

|COVpAij , Aklq| �
#

0 if i � j � k � l

0.82410 otherwise

åij ÝÑaij ÐÝaij
åkl 0.177620 0.122800 0.122800
ÝÑakl 0.122800 0.083795 0.083795
ÐÝakl 0.122800 0.083795 0.083795

arcs not incident on a common node

åij ÝÑaij ÐÝaij
åik 0.173986 0.123617 0.123617
ÝÑaik 0.123617 0.103489 0.062284
ÐÝaik 0.123617 0.062284 0.103489

arcs incident on a common node

112

Appendix B

Ledoit-Wolf Estimators for the

Shrinkage Coefficient

In Chapter 5 we defined the values of the shrinkage coefficient λ that minimize the

mean squared error of Σ̃ as

λ� �
°k
i�1

°
j�i VARpp̂ij � p̂ip̂jq �

°k
i�1 VARpp̂i � p̂2

i q°k
i�1

°
j�ipp̂ij � p̂ip̂jq2 �

°k
i�1pp̂i � p̂2

i � 1
4q2

, (B.1)

for the target T � 1
4Ik, and as

λ� �
°k
i�1

°
j�i VARpp̂ij � p̂ip̂jq � 2

°k
i�1 VARpp̂i � p̂2

i q°k
i�1

°
j�ipp̂ij � p̂ip̂jq2

. (B.2)

for T � diagpΣ̂q. Recall from Section 4.4.1 that for two edges ei and ej , i ¤ k, j ¤ k,

the probabilities pi, pj and pij are estimated from the m bootstrapped networks as

p̂i � 1

m

m̧

b�1

1te PEbupeiq, (B.3)

p̂j � 1

m

m̧

b�1

1te PEbupejq, (B.4)

p̂ij � 1

m

m̧

b�1

1te PEbupeiq1te PEbupejq. (B.5)

113

In both Equation B.1 and Equation B.2 we need to derive a closed form expressions

for VARpp̂i � p̂2
i q and VARpp̂ij � p̂ip̂jq. The former can be rewritten as

VARpp̂i � p̂2
i q � VARpp̂iq � VARpp̂2

i q � 2COVpp̂i, p̂2
i q �

� �
Epp̂2

i q � Epp̂iq2
�� �

Epp̂4
i q � Epp̂2

i q2
�� 2

�
Epp̂3

i q � Epp̂iqEpp̂2
i q
�
. (B.6)

If we let Yi �
°m
b�1 1te PEbupeiq � Binpm, piq, we can compute all the expectations in

the right hand of the previous expression using the first four moments of the Binomial

random variable:

Epp̂iq � E

�
1

m
Yi

� pi, (B.7)

Epp̂2
i q � E

��
1

m
Yi

�2
�
� 1

m2

�
mpi �mpm� 1qp2

i

�
, (B.8)

Epp̂3
i q � E

��
1

m
Yi

�3
�
� 1

m3

�
mpi � 3mpm� 1qp2

i �mpm� 1qpm� 2qp3
i

�
, (B.9)

Epp̂4
i q � E

��
1

m
Yi

�4
�
� 1

m4

�
mpi � 7mpm� 1qp2

i � 6mpm� 1qpm� 2qp3
i�

�mpm� 1qpm� 2qpm� 3qp4
i

�
. (B.10)

As for VARpp̂ij � p̂ip̂jq, it can be rewritten as

VARpp̂ij � p̂ip̂jq � VARpp̂ijq � VARpp̂ip̂jq � 2COVpp̂ij , p̂ip̂jq �
� �

Epp̂2
ijq � Epp̂ijq2

�� �
Epp̂2

i p̂
2
j q � Epp̂ip̂jq2

�� 2 rEpp̂ij p̂ip̂jq � Epp̂ijqEpp̂ip̂jqs . (B.11)

As before, if we let Yij �
°m
b�1 1te PEbupeiq1te PEbupejq � Binpm, pijq we have that

Epp̂ijq � E

�
1

m
Yij

� pij , (B.12)

Epp̂2
ijq � E

��
1

m
Yij

�2
�
� 1

m2

�
mpij �mpm� 1qp2

ij

�
. (B.13)

114

The remaining expectations are computed against the joint distribution of the random

variables Yij , Yi � Binpm, piq and Yj � Binpm, pjq. They can be rewritten as follows:

Epp̂ip̂jq � E

��
1

m

m̧

b�1

1te PEbupeiq
��

1

m

m̧

c�1

1te PEcupejq
��

� 1

m2
E

�
m̧

b�1

m̧

c�1

1te PEbupeiq1te PEcupejq
�

� 1

m2
E

�
m̧

b�1

1te PEbupeiq1te PEbupejq
�
�

� 1

m2
E

�
m̧

b�1

¸
c�b

1te PEbupeiq1te PEcupejq
�

� 1

m2

�
mpij � pm2pipj �mpijq

� � pipj (B.14)

Epp̂2
i p̂

2
j q �

1

m2

�
mpipj �mpm� 1qp2

i p
2
j

�
(B.15)

Epp̂ij p̂ip̂jq � E

��
1

m

m̧

b�1

1te PEbupeiq1te PEbupejq
�
�

�
�

1

m

m̧

c�1

1te PEcupeiq
��

1

m

m̧

d�1

1te PEdupejq
��

� 1

m3
E

�
m̧

b�1

m̧

c�1

m̧

d�1

1te PEbupeiq1te PEbupejq1te PEcupeiq1te PEdupejq
�

� 1

m3
E

�
m̧

b�1

1te PEbupeiq1te PEbupejq
�
�

� 1

m3
E

�
m̧

b�1

¸
c�b

1te PEbupeiq1te PEbupejq1te PEcupeiq
�
�

� 1

m3
E

�
m̧

b�1

¸
d�b

1te PEbupeiq1te PEbupejq1te PEdupejq
�
�

� 1

m3
E

�
m̧

b�1

¸
c�b

¸
d�b

1te PEbupeiq1te PEbupejq1te PEcupeiq1te PEdupejq
�

� 1

m3
rmpij �mpijpmpi � 1q �mpijpmpj � 1q �mpijpmpi � 1qpmpj � 1qs

� pijpipj (B.16)

115

The estimates for λ� can then be computed by plugging in the maximum likelihood

estimates p̂i, p̂j , p̂ij in the formulas derived above.

116

Bibliography

Abramson, B., Brown, J., Edwards, W., Murphy, A., and Winkler, R. L. (1996). Hailfinder:
A Bayesian System for Forecasting Severe Weather. International Journal of Forecasting,
12(1):57–71.

Agresti, A. (2002). Categorical Data Analysis. Wiley, 2nd edition.

Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE Transactions on
Automatic Control, 19(6):716 – 723.

Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis. Wiley, 3rd
edition.

Andreassen, S., Jensen, F., Andersen, S., Falck, B., Kjærulff, U., Woldbye, M., Sørensen, A.,
Rosenfalck, A., and Jensen, F. (1989). MUNIN – An Expert EMG Assistant. In Desmedt,
J. E., editor, Computer-Aided Electromyography and Expert Systems. Elsevier.

Ash, R. B. (2000). Probability and Measure Theory. Academic Press, 2nd edition.

Beinlich, I., Suermondt, H. J., Chavez, R. M., and Cooper, G. F. (1989). The ALARM Monitor-
ing System: A Case Study with Two Probabilistic Inference Techniques for Belief Networks.
In Proceedings of the 2nd European Conference on Artificial Intelligence in Medicine, pages
247–256. Springer-Verlag.

Billingsley, P. (1995). Probability and Measure. Wiley, 3rd edition.

Bilodeau, M. and Brenner, D. (1999). Theory of Multivariate Statistics. Springer-Verlag.

Binder, J., Koller, D., Russell, S., and Kanazawa, K. (1997). Adaptive Probabilistic Networks
with Hidden Variables. Machine Learning, 29(2–3):213–244.

Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. (2007). Discrete Multivariate Analysis:
Theory and Practice. Springer.

Borgelt, C., Steinbrecher, M., and Krus, R. (2009). Graphical Models: Representations for
Learning, Reasoning and Data Mining. Wiley, 2nd edition.

Bøttcher, S. G. and Dethlefsen, C. (2003). deal: A Package for Learning Bayesian Networks.
Journal of Statistical Software, 8(20):1–40.

Bouckaert, R. R. (1995). Bayesian Belief Networks: from Construction to Inference. PhD
thesis, Utrecht University, The Netherlands.

117

Bibliography

Butler, R. W., Huzurbazar, S., and Booth, J. G. (1992). Saddlepoint Approximations for the
Generalized Variance and Wilks’ Statistic. Biometrika, 79(1):157–169.

Castelo, R. and Roverato, A. (2006). A Robust Procedure For Gaussian Graphical Model
Search From Microarray Data With p Larger Than n. Journal of Machine Learning Research,
7:2621–2650.

Castillo, E., Gutiérrez, J. M., and Hadi, A. S. (1997). Expert Systems and Probabilistic Network
Models. Springer.

Chavan, S. S., Bauer, M. A., Scutari, M., and Nagarajan, R. (2009). NATbox: a Network
Analysis Toolbox in R. BMC Bioinformatics, 10(Suppl 11):S14. Supplement contains the
Proceedings of the 6th Annual MCBIOS Conference (Transformational Bioinformatics: De-
livering Value from Genomes).

Chickering, D. M. (1995). A Transformational Characterization of Equivalent Bayesian Network
Structures. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence
(UAI95), pages 87–98.

Chickering, D. M. (1996). Learning Bayesian Networks is NP-Complete. In Fisher, D. and Lenz,
H. J., editors, Learning from Data: Artificial Intelligence and Statistics V, pages 121–130.
Springer-Verlag.

Chickering, D. M. (2002). Optimal Structure Identification with Greedy Search. Journal of
Machine Learning Resesearch, 3:507–554.

Cooper, G. F. and Herskovits, E. (1992). A Bayesian Method for the Induction of Probabilistic
Networks from Data. Machine Learning, 9(4):309–347.

Cover, T. A. and Thomas, J. A. (2006). Elements of Information Theory. Wiley.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society Series B, 39:1–39.

Diestel, R. (2005). Graph Theory. Springer, 3rd edition.

Edwards, D. I. (2000). Introduction to Graphical Modelling. Springer, 2nd edition.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman & Hall.

Elidan, G. (2001). Bayesian Network Repository. Main web site hosted at
http://www.cs.huji.ac.il/site/labs/compbio/Repository/.

Elidan, G. and Friedman, N. (2005). Learning Hidden Variable Networks: The Information
Bottleneck Approach. Journal of Machine Learning Research, 6:81–127.

Fisher, N. I. and Sen, P. K. (1994). The Collected Works of Wassily Hoeffding. Springer-Verlag.

Fisher, R. A. (1921). On the Probable Error of a Coefficient of Correlation Deduced from a
Small Sample. Metron, 1:1–32.

Friedman, J., Hastie, T., and Tibshirani, R. (2007). Sparse Inverse Covariance Estimation With
the Graphical Lasso. Biostatistics, 9:432–441.

118

Bibliography

Friedman, N. (1997). Learning Belief Networks in the Presence of Missing Values and Hid-
den Variables. In Proceedings of the 14th International Conference on Machine Learning
(ICML97), pages 125–133.

Friedman, N., Goldszmidt, M., and Wyner, A. (1999a). Data Analysis with Bayesian Networks:
A Bootstrap Approach. In Proceedings of the 15th Annual Conference on Uncertainty in
Artificial Intelligence (UAI-99), pages 206 – 215. Morgan Kaufmann.

Friedman, N. and Koller, D. (2003). Being Bayesian about Bayesian Network Structure: A
Bayesian Approach to Structure Discovery in Bayesian Networks. Machine Learning, 50(1–
2):95–126.

Friedman, N., Linial, M., and Nachman, I. (2000). Using Bayesian Networks to Analyze Ex-
pression Data. Journal of Computational Biology, 7:601–620.

Friedman, N., Pe’er, D., and Nachman, I. (1999b). Learning Bayesian Network Structure from
Massive Datasets: The “Sparse Candidate” Algorithm. In Proceedings of 15th Conference
on Uncertainty in Artificial Intelligence (UAI), pages 206–221. Morgan Kaufmann.

Frohlich, H., Sahin, O., Arlt, D., Bender, C., and Beißbarth, T. (2009). Deterministic Ef-
fects Propagation Networks for Reconstructing Protein Signaling Networks from Multiple
Interventions. BMC Bioinformatics, 10(1):322.

Gámez, J. A., Mateo, J., and Puerta, J. (2010). Learning Bayesian Networks by Hill Climbing:
Efficient Methods Based on Progressive Restriction of the Neighborhood. Data Mining and
Knowledge Discovery, pages 1–43.

Ge, Y., Li, C., and Yin, Q. (2010). Study on Factors of Floating Womens Income in Jiangsu
Province Based on Bayesian Networks. In Zeng, Z. and Wang, J., editors, Advances in Neural
Network Research and Applications, volume 67 of Lecture Notes in Electrical Engineering,
pages 819–827. Springer.

Geiger, D. and Heckerman, D. (1994). Learning Gaussian Networks. Technical report, Microsoft
Research, Redmond, Washington. Available as Technical Report MSR-TR-94-10.

Gentleman, R., Whalen, E., Huber, W., and Falcon, S. (2010). graph: A Package to Handle
Graph Data Structures. R package version 1.26.0.

Gentry, J., Long, L., Gentleman, R., Falcon, S., Hahne, F., and Sarkar, D. (2010). Rgraphviz:
Provides Plotting Capabilities for R Graph Objects. R package version 1.26.0.

Goldberg, D. (1991). What Every Computer Scientist Should Know About Floating Point
Arithmetic. ACM Computing Surveys, 23(1):5–48.

Harary, F. and Palmer, E. M. (1973). Graphical Enumeration. Academic Press.

Hasanat, M. A., Ramachandram, D., and Mandava, R. (2010). Bayesian Belief Network Learn-
ing Algorithms for Modeling Contextual Relationships in Natural Imagery: a Comparative
Study. Artificial Intelligence Review, pages 1–18.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2nd edition.

119

Bibliography

Hausser, J. and Strimmer, K. (2009). Entropy Inference and the James-Stein Estimator, with
Application to Nonlinear Gene Association Networks. Journal of Machine Learning Re-
sesearch, 10:1469–1484.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning Bayesian Networks: The
Combination of Knowledge and Statistical Data. Machine Learning, 20(3):197–243. Available
as Technical Report MSR-TR-94-09.

Hoeffding, W. (1940). Masstabinvariante Korrelationstheorie. Schriften des Mathematischen
Instituts und des Instituts für Angewandte Mathematik der Universität Berlin, 5(3):179–223.

Holmes, D. E. and Jain, L. C., editors (2008). Innovations in Bayesian Networks: Theory and
Applications. Springer-Verlag.

Hotelling, H. (1953). New Light on the Correlation Coefficient and Its Transforms. Journal of
the Royal Statistical Society. Series B (Methodological), 15(2):193–232.

Ide, J. S. and Cozman, F. G. (2002). Random Generation of Bayesian Networks. In Proceedings
of the 16th Brazilian Symposium on Artificial Intelligence, pages 366–375. Springer-Verlag.

Imoto, S., Kim, S. Y., Shimodaira, H., Aburatani, S., Tashiro, K., Kuhara, S., and Miyano, S.
(2002). Bootstrap Analysis of Gene Networks Based on Bayesian Networks and Nonpara-
metric Regression. Genome Informatics, 13:369–370.

James, W. and Stein, C. (1961). Estimation with Quadratic Loss. In Neyman, J., editor,
Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, pages
361–379.

Jensen, F. V. (2001). Bayesian Networks and Decision Graphs. Springer.

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions.
Wiley.

Jungnickel, D. (2008). Graphs, Networks and Algorithms. Springer-Verlag, 3rd edition.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques.
MIT Press.

Korb, K. and Nicholson, A. (2004). Bayesian Artificial Intelligence. Chapman and Hall.

Krämer, N., Schäfer, J., and Boulesteix, A. (2009). Regularized Estimation of Large-Scale Gene
Association Networks Using Graphical Gaussian Models. BMC Bioinformatics, 10(1):384.

Krummenauer, F. (1998a). Efficient Simulation of Multivariate Binomial and Poisson Distri-
butions. Biometrical Journal, 40(7):823–832.

Krummenauer, F. (1998b). Limit Theorems for Multivariate Discrete Distributions. Metrika,
47(1):47 – 69.

Kullback, S. (1968). Information Theory and Statistics. Dover Publications.

120

Bibliography

Larrañaga, P., Sierra, B., Gallego, M. J., Michelena, M. J., and Picaza, J. M. (1997). Learning
Bayesian Networks by Genetic Algorithms: A Case Study in the Prediction of Survival in
Malignant Skin Melanoma. In Proceedings of the 6th Conference on Artificial Intelligence in
Medicine in Europe (AIME’97), pages 261–272. Springer.

Lauritzen, S. L. and Spiegelhalter, D. (1988). Local Computation with Probabilities on Graph-
ical Structures and their Application to Expert Systems (with discussion). Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 50(2):157–224.

Ledoit, O. and Wolf, M. (2003). Improved Estimation of the Covariance Matrix of Stock Returns
with an Application to Portfolio Selection. Journal of Empirical Finance, 10:603–621.

Lee, J. K. (2010). Statistical Bioinformatics: a Guide for Life and Biomedical Science Re-
searchers. Wiley.

Legendre, P. (2000). Comparison of Permutation Methods for the Partial Correlation and
Partial Mantel Tests. Journal of Statistical Computation and Simulation, 67:37–73.

Leonenko, N. and Seleznjev, O. (2010). Statistical Inference for the ε-Entropy and the Quadratic
Rényi Entropy. Journal of Multivariate Analysis, 101(9):1981–1994.

Lin, K., Husmeier, D., Dondelinger, F., Mayer, C. D., Liu, H., Prichard, L., Salmond, G. P. C.,
Toth, I. K., and Birch, P. R. J. (2010). Reverse Engineering Gene Regulatory Networks
Related to Quorum Sensing in the Plant Pathogen Pectobacterium Atrosepticum. In Fenyö,
D., editor, Computational Biology, pages 253–281. Humana Press.

Loève, M. (1977). Probability Theory. Springer-Verlag, 4th edition.

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. Academic Press.

Margaritis, D. (2003). Learning Bayesian Network Model Structure from Data. PhD thesis,
School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA. Available as Tech-
nical Report CMU-CS-03-153.

Margolin, A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R., and Califano,
A. (2006). ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in
a Mammalian Cellular Context. BMC Bioinformatics, 7(Suppl 1):S7.

Mari, D. D. and Kotz, S. (2001). Correlation and Dependence. Imperial College Press.

Melançon, G., Dutour, I., and Bousquet-Mélou, M. (2000). Random Generation of DAGs
for Graph Drawing. Technical Report INS-R0005, Centre for Mathematics and Computer
Sciences, Amsterdam.

Meloni, A., Ripoli, A., Positano, V., and Landini, L. (2009). Improved Learning of Bayesian
Networks in Biomedicine. In Proceedings of the 9th International Conference on Intelligent
Systems Design and Applications, pages 624–628. IEEE Computer Society.

Moors, J. J. A. and Muilwijk, J. (1971). An Inequality for the Variance of a Discrete Random
Variable. Sankhy: The Indian Journal of Statistics, Series B, 33(3/4):385–388.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley.

121

Bibliography

Nagao, H. (1973). On Some Test Criteria for Covariance Matrix. The Annals of Statistics,
1(4):700–709.

Nagarajan, R., Datta, S., and Scutari, M. (2011). Graphical Models in R. Springer. In
preparation.

Nagarajan, R., Datta, S., Scutari, M., Beggs, M. L., Nolen, G. T., and Peterson, C. A. (2010).
Functional Relationships Between Genes Associated with Differentiation Potential of Aged
Myogenic Progenitors. Frontiers in Physiology, 1(21):1–8.

Neapolitan, R. E. (2003). Learning Bayesian Networks. Prentice Hall.

Nocedal, J. and Wright, S. J. (1999). Numerical Optimization. Springer-Verlag.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann.

Pearl, J. (2009). Causality: Models, Reasoning and Inference. Cambridge University Press, 2nd
edition.

Pesarin, F. and Salmaso, L. (2010). Permutation Tests for Complex Data: Theory, Applications
and Software. Wiley.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria.

Rauber, T. and Rünger, G. (2010). Parallel Programming For Multicore and Cluster Systems.
Springer-Verlag.

Rissanen, J. (2007). Information and Complexity in Statistical Models. Springer.

Russell, S. J. and Norvig, P. (2009). Artificial Intelligence: A Modern Approach. Prentice Hall,
3rd edition.

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer.

Schäfer, J. and Strimmer, K. (2005). A Shrinkage Approach to Large-Scale Covariance Matrix
Estimation and Implications for Functional Genomics. Statistical Applications in Genetics
and Molecular Biology, 4:32.

Schwarz, G. E. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6(2):461 –
464.

Scutari, M. (2009). Structure Variability in Bayesian Networks. Working Paper 13-2009,
Department of Statistical Sciences, University of Padova. Deposited on arXiv in the Statistics
- Methodology archive, available from http://arxiv.org/abs/0909.1685.

Scutari, M. (2010a). bnlearn: Bayesian Network Structure Learning. R package version 2.3.

Scutari, M. (2010b). Learning Bayesian Networks with the bnlearn R Package. Journal of
Statistical Software, 35(3):1–22.

Seber, G. A. F. (2008). A Matrix Handbook for Stasticians. Wiley.

122

Bibliography

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction, and Search. MIT
Press.

Stein, C. (1956). Inadmissibility of the Usual Estimator for the Mean of a Multivariate Distri-
bution. In Neyman, J., editor, Proceedings of the 3rd Berkeley Symposium on Mathematical
Statistics and Probability, pages 197–206.

Steyn, H. S. (1978). On Approximations for the Central and Noncentral Distribution of the
Generalized Variance. Journal of the American Statistical Association, 73(363):670–675.

Tierney, L., Rossini, A. J., Li, N., and Sevcikova, H. (2008). snow: Simple Network of Work-
stations. R package version 0.3-3.

Tsamardinos, I., Aliferis, C. F., and Statnikov, A. (2003). Algorithms for Large Scale Markov
Blanket Discovery. In Proceedings of the 16th International Florida Artificial Intelligence
Research Society Conference, pages 376–381. AAAI Press.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. (2006). The Max-Min Hill-Climbing Bayesian
Network Structure Learning Algorithm. Machine Learning, 65(1):31–78.

Verma, T. S. and Pearl, J. (1991). Equivalence and Synthesis of Causal Models. Uncertainty
in Artificial Intelligence, 6:255–268.

Wishart, J. (1949). Cumulants of Multivariate Multinomial Distributions. Biometrika, 36:47–
58.

Yaramakala, S. and Margaritis, D. (2005). Speculative Markov Blanket Discovery for Optimal
Feature Selection. In Proceedings of the 5th IEEE International Conference on Data Mining,
pages 809–812. IEEE Computer Society.

123

	Table of Contents
	Notation
	Notation
	Introduction
	Overview
	Main Contributions of the Thesis

	Bayesian Networks
	An Introduction to Bayesian Networks
	Bayesian Network Learning Algorithms
	Constraint-based Algorithms
	Score-based Algorithms
	Hybrid Algorithms
	Parameter Learning

	Pearl's Causality
	Bayesian and Markov Networks

	The bnlearn R Package
	An Overview of bnlearn
	Manipulating Network Structures
	Learning a Bayesian Network
	Fundamental Assumptions of Structure Learning Algorithms
	Choosing the Global and Local Distributions
	Including Prior Information on the Data
	Learning the Structure of the Network
	Learning the Parameters

	Performing Inference on a Bayesian Network
	Bootstrap
	Cross-Validation
	Conditional Probability Queries

	Parallel Structure Learning for Bayesian Networks
	Constraint-based Algorithms
	Score-based Algorithms
	Hybrid Algorithms

	Multivariate Discrete Distributions in Structure Modelling
	Modelling Graphical Structures
	The Multivariate Bernoulli Distribution
	Uncorrelation and Independence
	Properties of the Covariance Matrix
	Sequences of Multivariate Bernoulli Variables

	The Multivariate Trinomial Distribution
	Relationship with the Multivariate Bernoulli
	Properties of the Covariance Matrix

	Bootstrap and Variability
	Undirected Graphs
	Directed Acyclic Graphs

	Measuring the Variability of Network Structures
	Descriptive Statistics for Undirected Graphs
	Hypothesis Tests for Undirected Graphs
	Asymptotic Inference
	Monte Carlo Inference and Parametric Bootstrap

	Regularized Estimators and Statistics for Undirected Graphs
	Measures of Variability for Directed Acyclic Graphs

	Comparing Different Learning Strategies
	Conditional Independence Tests and Network Structures
	Permutation Tests
	Tests Based on Shrinkage Estimators

	Learning Strategies and Structure Variability
	Descriptive Statistics
	Testing Against the Maximum Entropy Distribution

	Conclusions
	Open Problems

	Moments of the Multivariate Trinomial Distribution
	Number of directed acyclic graphs of given size
	Moments for the 3-dimensional distribution
	Moments for the 4-dimensional distribution
	Moments for the 5-dimensional distribution
	Moments for the 6-dimensional distribution
	Moments for the 7-dimensional distribution

	Ledoit-Wolf Estimators for the Shrinkage Coefficient
	Bibliography

