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Machine Learning: The Grand Vision

Machine learning studies the algorithms and the statistical tools that
allow computer systems to perform specific, well-defined tasks without
explicit instructions. It is a sub-field of artificial intelligence.

Broadly speaking, in order to do this:
1. We need a working model of the world that describes the task and

its context in a way a computer can understand.
2. We need a goal: how do wemeasure the performance of the model?

Because that is what we optimise for! Usually it is the ability to
predict new events.

3. We encode our knowledge of the world drawing information from
training data, experts or both: this is called learning.

4. The computer system uses the model as a proxy of reality and to
perform inference and decide if/how to perform the assigned task as
new inputs come in.
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Identify the Variables to Include in the Model

The first step in building a machine learning model is to choose which
variables to include. Which aspects of/entities in the world do we need
the model to represent for the computer to carry out the assigned task?
This is known as feature selection.

• Each aspect of the world or entity is modelled with one random
variable.

• We should use a small enough number of variables because if we
have toomany:
• it is difficult it is to construct the model;
• it is difficult to interpret and to troubleshoot it;
• the model requires too much computing power to learn and to run.

• Wemust choose which are the relevant events that make up the
sample space of each variable, again taking care of not having too
many.
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An example: The Car Start Problem

Fuel

Fuel Meter

Spark Plugs

Start

Realistic Pragmatic

Fuel 0%–100% Yes , No
Spark Plugs Work , Fault Work , Fault

Start Yes , No Yes , No
Fuel Meter 0%–100% Empty , Half , Full
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Generative versus Discriminative Models

The second step is choosing which class of machine learning models to
select from.

• Generativemodels: we have a set of variables𝑋1, … , 𝑋𝑁 describing
various components of a complex phenomenon, and we are
interested in building a mechanistic model of that phenomenon to
understand it. Therefore, we want to show how the various parts
interact with each other. In order to do so we choose to model their
joint probability P(𝑋1, … , 𝑋𝑁).

• Discriminative models: we have one particular variable (say, 𝑋1)
that is closely tied with our model task, and a number of other
variables (𝑋2, … , 𝑋𝑁) which we believe can be used to predict it.
We do not care about how the 𝑋𝑖 are related to each other, so we
just model P(𝑋1 ∣ 𝑋2, … , 𝑋𝑁).
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Model Relationships Between Variables

How do we decide whether there is a relationships between variables?

We never have perfect knowledge of what we are modelling: hence we
use the language of probability, and we say that two variables are
associated if the occurrence of an event in one variable affects the
probability of an event occurring in another variable, possibly
conditional on other variables.

How can we acquire information on what we are modelling:
• consulting domain experts;
• using probability and statistics to extract it from data;
• a combination of both.
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The Car Start Problem, with Edges

Fuel

Fuel Meter

Spark Plugs

Start

• The Fuel Meter measures the amount of Fuel?

• The Spark Plugs ignite the Fuel to Start the car?

• If there is Fuel in the car, it can start even if the Fuel Meter is wrong
and displays 0%?
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Car Start: Probabilistic versus Causal Construction

In probability associations are symmetric: the derivation of Bayes’
theoremmakes it really clear that

P(𝑋1 ∣ 𝑋2) P(𝑋2) = P(𝑋1, 𝑋2) = P(𝑋2 ∣ 𝑋1) P(𝑋1).

However, it feels more natural to choose the conditioning variables such
that they affect the conditioned variables instead of the other way round.

But what does that mean from amodelling point of view? It means that
we are giving arcs a causal interpretation and that we choose arc
directions to go from cause (nodes) to effect (nodes).

How do we do that?
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The Car Start Problem, with Arcs

P(Start, Fuel Meter, Fuel, Spark Plugs)
= P(Start ∣ Fuel, Spark Plugs)×

P(Fuel Meter ∣ Fuel) P(Fuel)×
P(Spark Plugs)

Fuel

Fuel Meter

Spark Plugs

Start

P(Start, Fuel Meter, Fuel, Spark Plugs)
= P(Start ∣ Fuel, Spark Plugs)×

P(Fuel Meter) P(Fuel ∣ Fuel Meter)×
P(Spark Plugs)

Fuel

Fuel Meter

Spark Plugs

Start
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Car Start: Playing with Arc Directions

The criterion to identify causes and effect is intervention. Consider:

• If we fill the tank with fuel, the fuel meter goes up.

• If we tamper with the fuel meter to make is say Full , the fuel tank
does not magically refill itself.

Hence, Fuel is the cause and Fuel Meter is the effect and the most
intuitive arc direction is Fuel → Fuel Meter .

What the probability P(Fuel Meter ∣ Fuel) tells us is just that if the fuel
meter says Full there probably is fuel in the tank, whereas if the fuel
meter says Empty there may be no fuel in the tank (assuming the fuel
meter works reliably).
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Car Start: The Conditional Probabilities

Spark Plugs
Work Fault

? ?

Fuel
Yes No

? ?

Fuel Meter
Fuel = Yes Fuel = No

Empty ? ?
Half ? ?
Full ? ?

Start
Spark Plugs = Work

Fuel = Yes Fuel = No

Yes ? ?
No ? ?

Spark Plugs = Fault
Fuel = Yes Fuel = No

Yes ? ?
No ? ?

After we decide that the first model is good to go, we need to:
1. choose which distribution to use for each node;
2. fill in the values of its parameters by asking domain experts,

estimating them from data or a combination of the two.

The number of parameters gives the complexity of the model, rather
than the number of nodes or the number of arcs.
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Car Start: Interrogating the Model

Amore general way of using a model is to interrogate it: we have some
evidence on some of the variables (that is, we assume we know their
values), and we would like to know the the probability of some event.

For instance: say that Fuel Meter = Half . How does P(Start = Yes)
change after we introduce this evidence in the model?

Predicting Start from all the other variables is a particular case in which
we have evidence on all the other variables.
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Car Start: The Exhaustive (Dumb) Way

Armed with patience, we start by writing

P(Start = Yes) =
P(Start = Yes, Fuel = Yes) + P(Start = Yes, Fuel = No)

and then, recursively,

P(Start = Yes, Fuel = Yes) =
P(Start = Yes, Fuel = Yes, Spark.Plugs = Work)+

P(Start = Yes, Fuel = Yes, Spark.Plugs = Fault)

P(Start = Yes, Fuel = Yes, Spark.Plugs = Work)
= P(Start = Yes, Fuel = Yes, Spark.Plugs = Work, Fuel.Meter = Full)+

P(Start = Yes, Fuel = Yes, Spark.Plugs = Work, Fuel.Meter = Half)+
P(Start = Yes, Fuel = Yes, Spark.Plugs = Work, Fuel.Meter = Empty)
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Car Start: The Principled (Probabilistic) Way

P(Start = Yes, Fuel Meter = Half,
Fuel, Spark Plugs) =

= P(Start = Yes ∣ Fuel, Spark Plugs)×
P(Fuel Meter = Half ∣ Fuel)×
P(Fuel) P(Spark Plugs)

Fuel

Fuel Meter
 = "Half"

Spark Plugs

Start = "Yes"

P(Start = Yes, Fuel Meter = Half,
Fuel, Spark Plugs)

= P(Start ∣ Fuel, Spark Plugs)×
P(Fuel ∣ Fuel Meter = Half)×
P(Fuel.Meter = Half)

����P(Fuel)
×

����P(Fuel) P(Spark Plugs)

Fuel

Fuel Meter
 = "Half"

Spark Plugs

Start = "Yes"
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Car Start: The Principled (Probabilistic) Way

P(Start = Yes, Fuel, Spark Plugs ∣
Fuel Meter = Half)

= P(Start ∣ Fuel, Spark Plugs)×
P(Fuel ∣ Fuel Meter = Half)×

�����������P(Fuel.Meter = Half)
P(Fuel.Meter = Half)

×

P(Spark Plugs)

Fuel when
Fuel Meter

 = "Half"
Spark Plugs

Start = "Yes"

This leaves three variables, of which Start is fixed to Yes : hence we have
to consider P(Start = Yes) under four scenarios:

Fuel = Yes ∣ Fuel Meter = Half, Spark Plugs = Work
Fuel = Yes ∣ Fuel Meter = Half, Spark Plugs = Fault
Fuel = No ∣ Fuel Meter = Half, Spark Plugs = Work
Fuel = No ∣ Fuel Meter = Half, Spark Plugs = Fault

and sum the corresponding P(Start = Yes ∣ scenario) P(scenario).
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Car Start: The Principled (Algorithmic) Way

Exhaustive enumeration obviously:
1. does not scale (try that with 20 variables!);
2. is only feasible in the first place if all variables are discrete.

Each of the steps in the previous slide corresponds to both
• an (probabilistic) application of Bayes theorem
• a (graphical) manipulation of arcs and nodes.

We can use the fact that arcs represent probabilistic associations to
perform symbolic computations though graphical operations!

We can also threat this model like a hierarchical model and adapt the
literature on Monte Carlo simulations.
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Automating Modelling and Reasoning

Nowwe want to automate the whole process, so that the computer
system itself will (ideally) do all the work.

A model that promises to do this is Bayesian networks (BNs):
• They combine graphs and probability as we did earlier, but in a
rigorous fashion.

• There are automated reasoning algorithms for that use the
graphical part of the model to guide a computer system in
manipulating probability distributions, computing probabilities of
and predicting events of interest.

• It is possible to learn them automatically from data.
• They can be used as causal models.
• As far as models, go they are very green: they recycle large amounts
of results from classical statistics.
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Bayesian Networks in R: The bnlearn Package

Themost comprehensive R package for
working with Bayesian networks is bnlearn,
which you should install by

install.packages("bnlearn")

The reference website for bnlearn is:

http://www.bnlearn.com

And there is a reference book too!
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A Graph and a Probability Distribution

Bayesian networks (BNs) are defined by:

• a network structure, a directed acyclic graph 𝒢, in which each node
corresponds to a random variable 𝑋𝑖;

• a global probability distribution over X = {𝑋1, … , 𝑋𝑁} which can
be factorised into smaller local probability distributions according
to the arcs present in the graph.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

P(X; 𝚯) =
𝑁

∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

) where Π𝑋𝑖
= {parents of 𝑋𝑖}.
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Graphs

The first component of a BN is a graph. A graph
𝒢 is a mathematical object with:
• a set of nodes;
• a set of arcs 𝐴 which are identified by
pairs for nodes.

Given the nodes, a graph is uniquely identified
by the arc set. An arc can be:
• undirected if the arc has no direction, for
instance 𝐴 − 𝐵;

• directed if the arc has a specific direction,
for instance 𝐴 → 𝐵.

The assumption is that there is at most one arc
between each pair of nodes.

E
A

B

C

D

A B

C D

E
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Directed Acyclic Graphs

BNs use a specific kind of graph called a directed acyclic graph (DAG),
that:
• contains only directed arcs;
• does not contain any loop (an arc 𝐷 → 𝐷 from a node to itself);
• does not contain any cycle (a sequence of arcs like

𝐵 → 𝐶 → 𝐷 → 𝐵 that starts and ends in the same node).

A B

C D

E

A B

C D

E

A B

C D

E
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How the DAG Maps to the Probability Distribution

C
A B

D
E

F

DAG
Graphical
separation

Probabilistic
independence

Formally, the DAG is an independencemap of the probability distribution
of X, with graphical separation (⟂⟂𝐺) implying probabilistic
independence (⟂⟂𝑃 ).

21



Graphical Separation in DAGs: Fundamental Connections

separation (undirected graphs)

d-separation (directed acyclic graphs)

C
A B

C
A B

C
A B

C
A B
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Graphical Separation in DAGs: General Case

Now, in the general case we can extend the patterns from the
fundamental connections and apply them to every possible path
between A and B for a given C; this is how d-separation is defined.

If A, B and C are three disjoint subsets of nodes in a directed
acyclic graph 𝒢, then C is said to d-separate A from B, denoted
A ⟂⟂𝐺 B ∣ C, if along every path between a node inA and a node
in B there is a node 𝑣 satisfying one of the following two condi-
tions:
1. 𝑣 has converging edges (that is, there are two edges

pointing to 𝑣 from the adjacent nodes in the path) and none
of 𝑣 or its descendants (that is, the nodes that can be
reached from 𝑣) are in C.

2. 𝑣 is in C and does not have converging edges.

This definition clearly does not provide a computationally feasible
approach to assess d-separation; but there are other ways.
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A Simple Algorithm to Check D-Separation

C
A B

D
E

F

C
A B

D
E

F

Say that we want to check whether 𝐴 and 𝐸 are d-separated by 𝐵. First,
we can drop all the nodes that are not ancestors (that is, parents, parents’
parents, etc.) of 𝐴, 𝐸 and 𝐵 since each node only depends on its parents.
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A Simple Algorithm to Check D-Separation

C
A B

E

C
A B

E

We then transform the subgraph into its moral graph by
1. connecting all the nodes that have one child in common; and
2. removing all arc directions to obtain an undirected graph.

This transformation makes the dependence between parents explicit by
“marrying” them and of makes it possible for us to use the classic
definition of graphical separation.
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A Simple Algorithm to Check D-Separation

C
A B

E

Finally, we can just perform a depth-first or breadth-first search and see if
we can find an open path between 𝐴 and 𝐸, that is, a path that is not
blocked by 𝐵.
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D-Separation Example: The DAG We Created Earlier

The last graph is an undirected graph: if there is a path from A to E there
is a path from E to A . This means that d-separation is symmetric:

A �⟂⟂ 𝐺 E ∣ B ⟺ E �⟂⟂ 𝐺 A ∣ B

Which must be the case because independence is also symmetric,

P(A, E ∣ B) = P(E, A ∣ B) ≠ P(A ∣ B) P(E ∣ B),

and d-separation implies probabilistic independence.

NOTE: d-separation does not necessarily require a separating set. Or, to
put it in another way, the separating set can be empty. In that case we
are checking whether variables are marginally independent because
there is no path at all that connects them.
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The Local Markov Property

If we use d-separation as our definition of graphical separation,
assuming that the DAG is an independence map leads to the general
formulation of the decomposition of the global distribution

P(X) =
𝑁

∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
)

into the local distributions for the 𝑋𝑖 given their parents Π𝑋𝑖
. If 𝑋𝑖 has

two or more parents it depends on their joint distribution, because each
pair of parents forms a convergent connection centred on 𝑋𝑖 and we
cannot establish their independence. This decomposition is preferable
to that obtained from the chain rule,

P(X) =
𝑁

∏
𝑖=1

P(𝑋𝑖 ∣ 𝑋𝑖+1, … , 𝑋𝑁),

because the conditioning sets are typically smaller.
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The Local Markov Property

Another result along the same lines is the local Markov property, which
can be combined with the chain rule above to get the decomposition into
local distributions.

Eachnode𝑋𝑖 is conditionally independent of its non-descendants
(the nodes 𝑋𝑗 for which there is no path from 𝑋𝑖 to 𝑋𝑗) given its
parents.

Compared to the previous decomposition, it highlights the fact that
parents are not completely independent from their children in the BN: a
trivial application of Bayes’ theorem to invert the direction of the
conditioning shows how information on a child can change the
distribution of the parent.
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The Local Markov Property: Car Start

Fuel

Fuel Meter

Spark Plugs

Start

The parent sets:
Fuel = {}
Fuel Meter = {Fuel}
Spark Plugs = {}
Start = {Fuel, Spark Plugs}

The corresponding decomposition:

P(Start, Fuel Meter, Fuel,
Spark Plugs) =

P(Start ∣ Fuel, Spark Plugs)
P(Fuel Meter ∣ Fuel)×

P(Fuel) P(Spark Plugs)
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The Local Markov Property: The DAG We Created Earlier

A B

C

D E

F

The parent sets:
A = {}
B = {}
C = {A, B}
D = {C}
E = {C}
F = {D}

The corresponding decomposition:

P(A, B, C, D, E, F) =
P(A) P(B) P(C ∣ A, B)

P(D ∣ C) P(E ∣ C) P(F ∣ D)
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Completely D-Separating: Markov Blankets

Parents Children

Children's other parents
(Spouses)

Markov blanket of A

A

FI

H E

D

C

B

G

We can easily use the DAG to solve
the feature selection problem. The
set of nodes that graphically isolates
a target node from the rest of the
DAG is called its Markov blanket and
includes:
• its parents;
• its children;
• other nodes sharing a child.

Since ⟂⟂𝐺 implies ⟂⟂𝑃, we can restrict
ourselves to the Markov blanket to
perform any kind of inference on the
target node, and disregard the rest.
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Markov Blanket: Car Start

Fuel

Fuel Meter

Spark Plugs

Start

The parents, children and spouses
of Fuel :
{}
{Fuel Meter, Start}
{Spark Plugs}

The Markov blanket of Fuel :
{Fuel Meter, Spark Plugs, Start}
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Markov Blanket: The DAG we created earlier

A B

C

D E

F

Printing the parents, children
and spouses of C :
{A, B}
{D, E}
{}

The Markov blanket of C :
{A, B, D, E}
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Different DAGs, Same Distribution

A DAG uniquely identifies a factorisation of P(X); the converse is not
necessarily true. Consider this DAG:

X1

X10

X2 X3

X4

X5

X6

X7

X8X9
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Different DAGs, Same Distribution

The decomposition into local distributions is:

P(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10) =
P(𝑋1) P(𝑋3) P(𝑋5)⏟

𝑋5

P(𝑋6 ∣ 𝑋8) P(𝑋2 ∣ 𝑋1) P(𝑋7 ∣ 𝑋5)⏟⏟⏟⏟⏟
𝑋5→𝑋7

P(𝑋4 ∣ 𝑋1, 𝑋2) P(𝑋8 ∣ 𝑋3, 𝑋7) P(𝑋9 ∣ 𝑋2, 𝑋7) P(𝑋10 ∣ 𝑋1, 𝑋9).

However, look at 𝑋5 → 𝑋7: P(𝑋7 ∣ 𝑋5) P(𝑋5) = P(𝑋5 ∣ 𝑋7) P(𝑋7) by
Bayes’ theorem. Then

P(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10) =
P(𝑋1) P(𝑋3) P(𝑋7)⏟

𝑋7

P(𝑋6 ∣ 𝑋8) P(𝑋2 ∣ 𝑋1) P(𝑋5 ∣ 𝑋7)⏟⏟⏟⏟⏟
𝑋7→𝑋5

P(𝑋4 ∣ 𝑋1, 𝑋2) P(𝑋8 ∣ 𝑋3, 𝑋7) P(𝑋9 ∣ 𝑋2, 𝑋7) P(𝑋10 ∣ 𝑋1, 𝑋9).

36



Different DAGs, Same Distribution

The DAG that gives this new, equivalent decomposition is:

X1

X10

X2 X3

X4 X5

X6

X7

X8X9
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Different DAGs, Same Distribution

Next let’s look at 𝑋8 → 𝑋6.

P(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10) =
P(𝑋1) P(𝑋3) P(𝑋7) P(𝑋6 ∣ 𝑋8)⏟⏟⏟⏟⏟

𝑋8→𝑋6

P(𝑋2 ∣ 𝑋1) P(𝑋5 ∣ 𝑋7)

P(𝑋4 ∣ 𝑋1, 𝑋2) P(𝑋8 ∣ 𝑋3, 𝑋7)⏟⏟⏟⏟⏟⏟⏟
𝑋8←𝑋3,𝑋8←𝑋7

P(𝑋9 ∣ 𝑋2, 𝑋7) P(𝑋10 ∣ 𝑋1, 𝑋9).

We cannot reverse the 𝑋8 → 𝑋6 as we did with 𝑋5 → 𝑋7 without
changing the probability distribution. If we try, we get

P(𝑋6 ∣ 𝑋8) P(𝑋8 ∣ 𝑋3, 𝑋7) = P(𝑋8 ∣ 𝑋6) P(𝑋6)
P(𝑋8 ∣ 𝑋3, 𝑋7)

P(𝑋8)
,

which does not simplify because 𝑋8 has other parents (𝑋3, 𝑋7).
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Different DAGs, Same Distribution

Finally, let’s look at 𝑋1, 𝑋2 and 𝑋4.

P(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10) =
P(𝑋1)⏟

𝑋1

P(𝑋3) P(𝑋5) P(𝑋6 ∣ 𝑋8) P(𝑋2 ∣ 𝑋1)⏟⏟⏟⏟⏟
𝑋1→𝑋2

P(𝑋7 ∣ 𝑋5)

P(𝑋4 ∣ 𝑋1, 𝑋2)⏟⏟⏟⏟⏟⏟⏟
𝑋1→𝑋4,𝑋2→𝑋4

P(𝑋8 ∣ 𝑋3, 𝑋7) P(𝑋9 ∣ 𝑋2, 𝑋7) P(𝑋10 ∣ 𝑋1, 𝑋9).

By Bayes’ theoremwe can say

P(𝑋1) P(𝑋2 ∣ 𝑋1) P(𝑋4 ∣ 𝑋1, 𝑋2) = P(𝑋1, 𝑋2, 𝑋4) =
P(𝑋2)⏟

𝑋2

P(𝑋2 ∣ 𝑋4)⏟⏟⏟⏟⏟
𝑋4→𝑋2

P(𝑋1 ∣ 𝑋2, 𝑋4)⏟⏟⏟⏟⏟⏟⏟
𝑋1←𝑋2,𝑋1←𝑋4

which gives us another DAG again.
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Different DAGs, Same Distribution

The DAG that gives this last equivalent decomposition is:

X1

X10

X2 X3

X4

X5

X6

X7

X8X9
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Comparing These Different DAGs

original

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

equivalent #1

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

equivalent #2

X1

X10

X2 X3

X4

X5

X6

X7

X8X9
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Different DAGs, Same Distribution: Equivalence Classes

To sum it up: we can reverse a number of arcs without changing the
dependence structure of X. Since the fundamental connections
𝐴 → 𝐶 → 𝐵 and 𝐴 ← 𝐶 → 𝐵 are probabilistically equivalent, we can
reverse the directions of their arcs as we like as long as we do not create
any new v-structure (𝐴 → 𝐶 ← 𝐵, with no arc between 𝐴 and 𝐵).

This means that we can group DAGs into equivalence classes that are
uniquely identified by the underlying undirected graph and the
v-structures. The directions of other arcs can be either:
• uniquely identifiable because one of the directions would introduce
cycles or new v-structures (compelled arcs);

• completely undetermined.

The result is a completed partially directed graph (CPDAG).
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What Are V-Structures, and What Are Not

It is important to note that even though 𝐴 → 𝐶 ← 𝐵 is a convergent
connection, it is not a v-structure if 𝐴 and 𝐶 are connected by 𝐴 → 𝐵 or
𝐵 → 𝐴. In that case, we are no longer able to identify which nodes are
the parents in the connection.

For instance:

P(𝐴) P(𝐵 ∣ 𝐴) P(𝐶 ∣ 𝐴, 𝐵)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴→𝐶←𝐵, 𝐴→𝐵

= P(𝐴)
P(𝐵, 𝐴)

P(𝐴)
P(𝐶, 𝐴, 𝐵)

P(𝐴, 𝐵)
=

= P(𝐴) P(𝐶, 𝐵 ∣ 𝐴) = P(𝐴) P(𝐵 ∣ 𝐶, 𝐴) P(𝐶 ∣ 𝐴)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐶→𝐵←𝐴, 𝐴→𝐶

.

Therefore, the fact that the two parents in a v-structure are not
connected is crucial in the identification of the correct CPDAG.
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Our DAG

From this description we can tell different groups of arcs apart:

Directed arcs:

𝑋8 → 𝑋6

𝑋1 → 𝑋2

𝑋5 → 𝑋7

𝑋1 → 𝑋4

𝑋2 → 𝑋4

𝑋3 → 𝑋8

𝑋7 → 𝑋8

𝑋2 → 𝑋9

𝑋7 → 𝑋9

𝑋1 → 𝑋10

𝑋9 → 𝑋10

Undirected arcs:

None.

Compelled arcs:

𝑋1 → 𝑋10

𝑋2 → 𝑋9

𝑋3 → 𝑋8

𝑋7 → 𝑋8

𝑋7 → 𝑋9

𝑋8 → 𝑋6

𝑋9 → 𝑋10

V-structures:

𝑋1 → 𝑋10 ← 𝑋9

𝑋3 → 𝑋8 ← 𝑋7

𝑋2 → 𝑋9 ← 𝑋7

44



The Corresponding CPDAG

Which in the corresponding CPDAG become:

Directed arcs:

𝑋1 → 𝑋10

𝑋2 → 𝑋9

𝑋3 → 𝑋8

𝑋7 → 𝑋8

𝑋7 → 𝑋9

𝑋8 → 𝑋6

𝑋9 → 𝑋10

Undirected arcs:

𝑋1 −− 𝑋2

𝑋1 −− 𝑋4

𝑋2 −− 𝑋1

𝑋2 −− 𝑋4

𝑋4 −− 𝑋1

𝑋4 −− 𝑋2

𝑋5 −− 𝑋7

𝑋7 −− 𝑋5

Compelled arcs:

𝑋1 → 𝑋10

𝑋2 → 𝑋9

𝑋3 → 𝑋8

𝑋7 → 𝑋8

𝑋7 → 𝑋9

𝑋8 → 𝑋6

𝑋9 → 𝑋10

V-structures:

𝑋1 → 𝑋10 ← 𝑋9

𝑋3 → 𝑋8 ← 𝑋7

𝑋2 → 𝑋9 ← 𝑋7
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DAG, CPDAG and Equivalent DAGs

DAG

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

Skeleton

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

CPDAG

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

An Equivalent DAG
X1

X10

X2 X3

X4

X5

X6

X7

X8X9
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Two More Examples of Markov Blankets

X1

X10

X2 X3

X4

X5

X6

X7

X8X9

X1

X10

X2 X3

X4

X5

X6

X7

X8X9
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Markov Blankets are Symmetric

We can also check that Markov blankets are symmetric: if 𝐴 is in the
Markov blanket of 𝐵, then 𝐵 is in the Markov blanket of 𝐴.

In which Markov blankets is 𝑋9 in?
X1 X10 X2 X3 X4 X5 X6 X7 X8 X9

TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

Which nodes are in the Markov blanket of 𝑋9?
X1 X10 X2 X3 X4 X5 X6 X7 X8 X9

TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

This is a consequence of the fact that if 𝐴 is a parent of 𝐵, then 𝐵 is a
child of 𝐴; and if 𝐴 is a spouse of 𝐵, then 𝐵 is a spouse of 𝐴.
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Relevant Functions in bnlearn

• creating DAGs: empty.graph() , set.arc() , drop.arc() ,
reverse.arc() .

• model string representations: modelstring() , model2network() .

• nodes in a DAG: nodes() , parents() , children() , spouses() ,
nbr() , mb() .

• arcs in a DAG: arcs() , path.exists() , dsep() , directed.arcs() ,
undirected.arcs() , compelled.arcs() .

• DAG transformation: subgraph() , moral() , cpdag() .

• plotting: graphviz.plot() , graphviz.compare() .
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Summary and Remarks

• BNs are one of the oldest instances of machine learning models.

• BNs are a probabilistic model that use DAGs to make computations
systematic in a rigorous way.

• BNs allow computer systems to perform automatically all the
computations we did by hand at the beginning of this lecture.

• At the same time, BNs using DAGs means that they provide a
qualitative, intuitive way to reason about complex phenomena.

Next:
• What probability distributions do we use to construct a BN?
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Thanks!

Any questions?
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What About the Probability Distributions?

The second component of a BN is the probability distribution P(X). The
choice should be such that the BN:
• can be learned efficiently from data;
• is flexible (distributional assumptions should not be too limiting);
• is easy to query to perform inference.

The three most common choices in the literature (by far), are:
• discrete BNs (DBNs), in which X and the 𝑋𝑖 ∣ Π𝑋𝑖

are multinomial;
• Gaussian BNs (GBNs), in which X is multivariate normal and the

𝑋𝑖 ∣ Π𝑋𝑖
are univariate normal;

• conditional linear Gaussian BNs (CGBNs), in which 𝑋 is a mixture of
multivariate normals and the 𝑋𝑖 ∣ Π𝑋𝑖

are either multinomial,
univariate normal or mixtures of normals.

It has been proved in the literature that exact inference is possible in
these three cases, hence their popularity.
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Discrete BNs

visit to Asia? smoking?

tuberculosis? lung cancer? bronchitis?

either tuberculosis
or lung cancer?

positive X-ray?
dyspnoea?

A classic example of DBN is
the ASIA network from
Lauritzen & Spiegelhalter
(1988), which includes a
collection of binary
variables. It describes a
simple diagnostic problem
for tuberculosis and lung
cancer.

Total parameters of X :
28 − 1 = 255
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The Global Distribution

The global distribution P(X) is

X ∼ Mul (𝜋<insert one subscript for each node here>).

The parameters 𝜋<insert one subscript for each node here> describe the probability
of each possible combination of the values of the variables in X.

Problems:
• There are toomany parameters: if each variable can take 𝑙 values

|Θ| = |X|𝑙 - 1! It is difficult to even tabulate them, much less give
them a practical interpretation.

• They are too small: ≈ 1/(|X|𝑙) on average since they sum up to 1.
• They have no structure: they do not separate main effects,
low-order interactions and high-order interactions.
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The Local Distributions

The definition of a BN states that P(X) = ∏𝑁
𝑖=1 P(𝑋𝑖 ∣ Π𝑋𝑖

).
Let’s assume:
1. Positivity: all probabilities are strictly positive.
2. Parameter independence: probabilities in each 𝑋𝑖 ∣ Π𝑋𝑖

that are
conditional on different parent configurations are independent.

3. Parameter modularity: probabilities in different 𝑋𝑖 ∣ Π𝑋𝑖
are

independent.
Then 𝑋𝑖 ∣ Π𝑋𝑖

∼ Mul (𝜋𝑖𝑘 ∣ 𝑗) where 𝜋𝑖𝑘 ∣ 𝑗 = P(𝑋𝑖 = 𝑘 ∣ Π𝑋𝑖
= 𝑗).

Problems we solved:
• Each local distribution has only |Θ𝑋𝑖

| = (|Π𝑋𝑖
| + 1)𝑙 parameters.

• Each 𝜋𝑖𝑘 ∣ 𝑗 is ≈ 1/𝑙 on average.
Problems we did not solve:
• The 𝜋𝑖𝑘 ∣ 𝑗 still do not separate the effects of the Π𝑋𝑖

.
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Conditional Probability Tables (CPTs)

visit to Asia?

tuberculosis?

smoking?

lung cancer?

smoking?

bronchitis?

tuberculosis? lung cancer?

either tuberculosis
or lung cancer?

either tuberculosis
or lung cancer?

positive X-ray?

bronchitis?either tuberculosis
or lung cancer?

dyspnoea?

visit to Asia? smoking?

The local distributions
𝑋𝑖 ∣ Π𝑋𝑖

take the form of
conditional probability
tables for each node
given all the
configurations of the
values of its parents.

Overall parameters of
the 𝑋𝑖 ∣ Π𝑋𝑖

: 18

5



bnlearn: Creating a Discrete BN (ASIA)

asia.dag = model2network("[A][S][T|A][L|S][B|S][D|B:E][E|T:L][X|E]")

lv = c("yes", "no")

A.prob = array(c(0.01, 0.99), dim = 2, dimnames = list(A = lv))
S.prob = array(c(0.01, 0.99), dim = 2, dimnames = list(A = lv))
T.prob = array(c(0.05, 0.95, 0.01, 0.99), dim = c(2, 2),

dimnames = list(T = lv, A = lv))
L.prob = array(c(0.1, 0.9, 0.01, 0.99), dim = c(2, 2),

dimnames = list(L = lv, S = lv))
B.prob = array(c(0.6, 0.4, 0.3, 0.7), dim = c(2, 2),

dimnames = list(B = lv, S = lv))
D.prob = array(c(0.9, 0.1, 0.7, 0.3, 0.8, 0.2, 0.1, 0.9), dim = c(2, 2, 2),

dimnames = list(D = lv, B = lv, E = lv))
E.prob = array(c(1, 0, 1, 0, 1, 0, 0, 1), dim = c(2, 2, 2),

dimnames = list(E = lv, T = lv, L = lv))
X.prob = array(c(0.98, 0.02, 0.05, 0.95), dim = c(2, 2),

dimnames = list(X = lv, E = lv))

cpt = list(A = A.prob, S = S.prob, T = T.prob, L = L.prob, B = B.prob,
D = D.prob, E = E.prob, X = X.prob)

asia.bn = custom.fit(asia.dag, cpt)
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bnlearn: Conditional Probability Tables (I)

Smoking:
asia.bn$S

Parameters of node S (multinomial distribution)

Conditional probability table:
A
yes no

0.01 0.99

Lung cancer:
asia.bn$L

Parameters of node L (multinomial distribution)

Conditional probability table:

S
L yes no
yes 0.10 0.01
no 0.90 0.99
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bnlearn: Conditional Probability Tables (II)

Dyspnoea:

asia.bn$D

Parameters of node D (multinomial distribution)

Conditional probability table:

, , E = yes

B
D yes no
yes 0.9 0.7
no 0.1 0.3

, , E = no

B
D yes no
yes 0.8 0.1
no 0.2 0.9
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Conditional Probability Tables and Logistic Regression

A conditional probability table P(𝑋𝑖 ∣ Π𝑋𝑖
) is equivalent to a saturated

multinomial logistic regression for 𝑋𝑖 with all possible interaction terms
(of all possible orders) for the Π𝑋𝑖

: a model that has as many covariates
as there are free probabilities in the conditional probability table.

For each value 𝑘 of 𝑋𝑖, via the multinomial link function:

log(𝜋𝑖𝑘 ∣ •/𝜋𝑖1 ∣ •) = 𝜂𝑖𝑘 ∣ • 𝜂𝑖𝑘 ∣ • = Z𝑖𝜸𝑖𝑘

where Z𝑖 is the design matrix for the saturated model and the 𝜸𝑖𝑘 are the
regression coefficients.

Nowwe can:
• separate main and interaction effects; and
• simplify the structure of Θ𝑋𝑖

by removing higher-order interactions
as needed.
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Canonical Plot of a DBN

A
yes

no

B
yes

no

D
yes

no

E
yes

no

L
yes

no

S
yes

no

T
yes

no

X
yes

no
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Gaussian BNs

mechanics analysis

vectors statistics

algebra

A classic example of GBN is
the MARKS network from
Mardia, Kent & Bibby (1979),
which describes the
relationships between the
marks on 5math-related
topics.

Total parameters of X : 5 + 15 = 20
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The Global Distribution

The global distribution P(X) is

X ∼ 𝑁(𝝁, Σ)

where 𝝁 is the vector of the means (|X| × 1) and Σ is the covariance
matrix (|X| × |X|).

Classical multivariate statistics tells us that
1. if we assume that Σ is full rank, we can compute the precision

matrix Ω = Σ−1;
2. if Ω𝑖𝑗 = 0 then 𝑋𝑖 ⟂⟂𝑃 𝑋𝑗 ∣ X ⧵ {𝑋𝑖, 𝑋𝑗}.

In a GBN, the absence of an arc 𝑋𝑖 → 𝑋𝑗 in the DAG implies
𝑋𝑖 ⟂⟂𝐺 𝑋𝑗 ∣ X ⧵ {𝑋,𝑋𝑗}, which in turn implies 𝑋𝑖 ⟂⟂𝑃 𝑋𝑗 ∣ X ⧵ {𝑋,𝑋𝑗}.

As a result, GBNs can only model linear dependencies.
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Partial Correlations and Local Distributions

The local distributions P(𝑋𝑖 ∣ Π𝑋𝑖
) have two equivalent

parametrisations:
• using partial correlations;
• using linear regressions.

The partial correlation between 𝑋𝑖 and each of the Π𝑋𝑖
given the others

can be computed from Σ:
1. subset Σ to Σ(𝑖) = Σ{𝑋𝑖,Π𝑋𝑖};

2. compute Ω(𝑖), the inverse of Σ(𝑖);

3. the partial correlation is 𝜌𝑖𝑗 = −Ω(𝑖)
1,𝑗/√Ω(𝑖)

1,1/Ω(𝑖)
𝑗,𝑗.

The equivalent coefficients in the linear regression model

𝑋𝑖 = 𝜇𝑋𝑖
+ Π𝑋𝑖

𝜷𝑋𝑖
+ 𝜀𝑋𝑖

, 𝜀𝑋𝑖
∼ 𝑁(0, 𝜎2

𝑋𝑖
)

can be computed as 𝛽𝑋𝑖,𝑗 = 𝜌𝑖𝑗/√Σ𝑖,𝑖/Σ𝑗,𝑗 .
13



The Local Distributions

In practical applications, the linear regression parametrisation is more
common. For the MARKS data, it works out as follows:

ALG = 50.60 + 𝜀ALG ∼ 𝑁(0, 112.8)
ANL = −3.57 + 0.99ALG + 𝜀ANL ∼ 𝑁(0, 110.25)

MECH = −12.36 + 0.54ALG + 0.46VECT + 𝜀MECH ∼ 𝑁(0, 195.2)
STAT = −11.19 + 0.76ALG + 0.31ANL + 𝜀STAT ∼ 𝑁(0, 158.8)
VECT = 12.41 + 0.75ALG + 𝜀VECT ∼ 𝑁(0, 109.8)

Note that:
• parents only contribute main effects, no interactions;
• they only appear in their natural form, that is, no transforms.

Overall parameters of the 𝑋𝑖 ∣ Π𝑋𝑖
: 11 + 5 = 16
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bnlearn: Creating a Gaussian BN

marks.dag =
model2network("[ALG][ANL|ALG][MECH|ALG:VECT][STAT|ALG:ANL][VECT|ALG]")

ALG.dist = list(coef = c("(Intercept)" = 50.60), sd = 10.62)
ANL.dist = list(coef = c("(Intercept)" = -3.57, ALG = 0.99), sd = 10.5)
MECH.dist =
list(coef = c("(Intercept)" = -12.36, ALG = 0.54, VECT = 0.46), sd = 13.97)

STAT.dist =
list(coef = c("(Intercept)" = -11.19, ALG = 0.76, ANL = 0.31), sd = 12.61)

VECT.dist = list(coef = c("(Intercept)" = 12.41, ALG = 0.75), sd = 10.48)

ldist = list(ALG = ALG.dist, ANL = ANL.dist, MECH = MECH.dist,
STAT = STAT.dist, VECT = VECT.dist)

marks.bn = custom.fit(marks.dag, ldist)

Note that we specify the regression coefficients and the standard
deviation of the residuals in keeping with the parameterisation used by R .
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bnlearn: Local Linear Regressions

marks.bn[c("ALG", "STAT")]
$ALG

Parameters of node ALG (Gaussian distribution)

Conditional density: ALG
Coefficients:
(Intercept)

50.6
Standard deviation of the residuals: 10.6

$STAT

Parameters of node STAT (Gaussian distribution)

Conditional density: STAT | ALG + ANL
Coefficients:
(Intercept) ALG ANL

-11.19 0.76 0.31
Standard deviation of the residuals: 12.6

16



From Local to Global Distributions (I)

Reconstructing the global distribution from the local linear regression is
also an interesting exercise. This is how gbn2mvnorm() does it:
1. Count the nodes and sort them in topological order (top to bottom

in the DAG).
nodes = nodes(marks.bn)
nnodes = length(nodes)
ordered = node.ordering(marks.bn)

2. Compute the mean vector 𝝁, sweeping the nodes in topological
order.
mu = structure(rep(0, nnodes), names = nodes)
for (node in ordered) {
pars = marks.bn[[node]]$parents
coefs = marks.bn[[node]]$coefficients

mu[node] = sum(c(1, mu[pars]) * coefs[c("(Intercept)", pars)])
}#FOR
mu

ALG ANL MECH STAT VECT
50.6 46.5 38.1 41.7 50.4
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From Local to Global Distributions (II)

3. Sweep the nodes again to construct an auxiliary matrix cumulating
up the regression coefficients and the residual standard deviations
in the lower triangular part.
chol = matrix(0, nrow = nnodes, ncol = nnodes,

dimnames = list(ordered, ordered))
for (node in ordered) {
pars = marks.bn[[node]]$parents
coefs = marks.bn[[node]]$coefficients
stderr = marks.bn[[node]]$sd

chol[node, node] = stderr
chol[node, ] = chol[node, ] + t(coefs[pars]) %*% chol[pars, ]

}
chol

ALG ANL VECT MECH STAT
ALG 10.62 0.00 0.00 0 0.0
ANL 10.51 10.50 0.00 0 0.0
VECT 7.96 0.00 10.48 0 0.0
MECH 9.40 0.00 4.82 14 0.0
STAT 11.33 3.25 0.00 0 12.6
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From Local to Global Distributions (III)

4. Compute the cross-product of chol to get the covariance matrix Σ.
sigma = (chol %*% t(chol))[nodes, nodes, drop = FALSE]
sigma

ALG ANL MECH STAT VECT
ALG 112.8 111.7 99.8 120.3 84.6
ANL 111.7 220.8 98.8 153.3 83.7
MECH 99.8 98.8 306.7 106.5 125.4
STAT 120.3 153.3 106.5 298.0 90.2
VECT 84.6 83.7 125.4 90.2 173.3

For comparison, the raw value from the original MARKS data set:

colMeans(marks)[nodes]
ALG ANL MECH STAT VECT

50.6 46.7 39.0 42.3 50.6

cov(marks)[nodes, nodes]
ALG ANL MECH STAT VECT

ALG 112.9 112.1 102 122 85.2
ANL 112.1 220.4 106 156 94.7
MECH 101.6 106.3 306 117 127.2
STAT 121.9 155.5 117 298 99.0
VECT 85.2 94.7 127 99 172.8

19



Gaussian Bayesian Networks and Wright's Path Analysis

ALG

ANL

MECHSTAT

VECT

 0.99

  0.54

0.76          

   0.75

   0.31
  0.46
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Canonical Plot of a GBN

ALG

(Intercept)

ANL
(Intercept)

ALG

MECH
(Intercept)

ALG

VECT

STAT
(Intercept)

ALG

ANL

VECT
(Intercept)

ALG
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Conditional Linear Gaussian BNs

CGBNs contain both discrete and continuous nodes, and combine DBNs
and GBNs as follows to obtain a mixture-of-Gaussians distribution:
• continuous nodes cannot be parents of discrete nodes;
• the local distribution of each discrete node is a CPT;
• the local distribution of each continuous node is a set of linear
regression models, one for each configurations of the discrete
parents, with the continuous parents acting as regressors.

sexdrug

weight loss
(week 1)

weight loss
(week 2)

A classic example is the RATS’
WEIGHTS network from Edwards
(1995), which describes weight
loss in a drug trial on rats.
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The Local Distributions: Mixtures of Linear Regressions

The resulting local distribution for the first weight loss for drugs "D1" ,
"D2" and "D3" is:

WL1D1 = 7 + 𝜀WL1 ∣ D1 ∼ 𝑁(0, 2.5)
WL1D2 = 7.50 + 𝜀WL1 ∣ D2 ∼ 𝑁(0, 2)
WL1D3 = 14.75 + 𝜀WL1 ∣ D3 ∼ 𝑁(0, 11)

with just the intercepts since WL1 has no continuous parents. The local
distribution for the second weight loss is:

WL2D1 = 1.02 + 0.89WL1 + 𝜀WL2 ∣ D1 ∼ 𝑁(0, 3.2)
WL2D2 = −1.68 + 1.35WL1 + 𝜀WL2 ∣ D2 ∼ 𝑁(0, 4)
WL2D3 = −1.83 + 0.82WL1 + 𝜀WL2 ∣ D3 ∼ 𝑁(0, 1.9)

and contains a regression coefficient for WL1 .
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The Global Distribution (I)

The discrete nodes define the components of a mixture, each component
is the joint multivariate distribution of the continuous nodes.
Drug has states "D1" , "D2" and "D3" . Sex has states "M" and "F" . So the
mixture has 6 components:

{{"D1", "M"}, {"D1", "F"}, {"D2", "M"},

{"D2", "F"}, {"D3", "M"}, {"D3", "F"}}

The first component, for which Drug is "D1" and sex is "M" , identifies the
local distributions of weight loss as:

WL1D1 = 7 + 𝜀WL1 ∣ D1 ∼ 𝑁(0, 2.5)
WL2D1 = 1.02 + 0.89WL1 + 𝜀WL2 ∣ D1 ∼ 𝑁(0, 3.2)

Together, they can be thought of as a GBN and therefore we can write
them as a multivariate normal distribution as we did earlier.
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The Global Distribution (II)

The component for {"D1" , "F"} is identical to that for {"D1" , "M"} because
weight loss is independent from sex given drug.

Along the same lines, the components for both {"D2" , "M"} and
{"D2" , "F"} identify the local distributions of weight loss as:

WL1D2 = 7.50 + 𝜀WL1 ∣ D2 ∼ 𝑁(0, 2)
WL2D2 = −1.68 + 1.35WL1 + 𝜀WL2 ∣ D2 ∼ 𝑁(0, 4)

For {"D3" , "M"} and {"D3" , "F"}:

WL1D3 = 14.75 + 𝜀WL1 ∣ D3 ∼ 𝑁(0, 11)
WL2D3 = −1.83 + 0.82WL1 + 𝜀WL2 ∣ D3 ∼ 𝑁(0, 1.9)

In total, we have a mixture model with six components, each with a
bivariate normal distribution.
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bnlearn: Creating a Conditional Linear Gaussian BN

rats.dag = model2network("[SEX][DRUG|SEX][WL1|DRUG][WL2|WL1:DRUG]")
SEX.lv = c("M", "F")
DRUG.lv = c("D1", "D2", "D3")

SEX.prob = array(c(0.5, 0.5), dim = 2, dimnames = list(SEX = SEX.lv))
DRUG.prob = array(c(0.3333, 0.3333, 0.3333, 0.3333, 0.3333, 0.3333),

dim = c(3, 2), dimnames = list(DRUG = DRUG.lv, SEX = SEX.lv))
WL1.coef = matrix(c(7, 7.50, 14.75), nrow = 1, ncol = 3,

dimnames = list("(Intercept)", NULL))
WL1.dist = list(coef = WL1.coef, sd = c(1.58, 0.447, 3.31))
WL2.coef = matrix(c(1.02, 0.89, -1.68, 1.35, -1.83, 0.82), nrow = 2, ncol = 3,

dimnames = list(c("(Intercept)", "WL1")))
WL2.dist = list(coef = WL2.coef, sd = c(1.78, 2, 1.37))

ldist = list(SEX = SEX.prob, DRUG = DRUG.prob, WL1 = WL1.dist, WL2 = WL2.dist)
rats.bn = custom.fit(rats.dag, ldist)

The regression coefficients are stored in a matrix with one conditional
regression in each column: each column corresponds to one
configuration of the discrete parents and each row to one of the
continuous parents.
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bnlearn: Mixtures of Linear Regressions

bn$WL2

Parameters of node WL2 (conditional Gaussian distribution)

Conditional density: WL2 | DRUG + WL1
Coefficients:

0 1 2
(Intercept) 1.02 -1.68 -1.83
WL1 0.89 1.35 0.82
Standard deviation of the residuals:

0 1 2
1.78 2.00 1.37
Discrete parents' configurations:

DRUG
0 D1
1 D2
2 D3
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Mixtures of Linear Regressions and Mixed-Effects Models

The local distribution of each continuous node contains a set of
regressions, all with the same coefficients. Consider WL2 : we can write
the intercept and each coefficient as the deviation from the respective
means across the drugs.

WL2D1 = (1.85 − 0.83) + (−0.13 + 1.02)WL1 + 𝜀WL2 ∣ D1

WL2D2 = (−0.85 − 0.83) + (0.33 + 1.02)WL1 + 𝜀WL2 ∣ D2

WL2D3 = (−1.00 − 0.83) + (−0.20 + 1.02)WL1 + 𝜀WL2 ∣ D3

This representation looks much like a mixed-effects models with a fixed
intercept (0.83), a fixed slope (1.02), a random intercept (one for each
drug) and a random slope (one for each drug).
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Limitations of These Probability Distributions

• No real-world data set follows a multivariate Gaussian distribution:
even if the marginal distributions are normal, not all dependence
relationships are linear.

• Computing partial correlations can be problematic because of
singularities.

• Parametric assumptions for mixed data have strong limitations: they
impose constraints on which arcs may be present in the DAG.

• Discretisation is a common solution to the above problems, but it may
discard useful information and it is tricky to get right (choosing a set
of intervals such that the dependence relationships involving the
original variable are preserved). On the other hand, dependencies are
no longer required to be linear.

• Ordinal variables are treated as categorical, again losing information.
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Canonical Plot of a CGBN
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Parameter Learning: Likelihood, Bayesian and Shrinkage

If the structure of the model is known, the problem of estimating the
parameters of the global distribution can be solved by estimating the
parameters of each local distribution, one at a time.

Common choices are:
• Maximum likelihood estimators: just the usual empirical estimators.
Often described as either maximum entropy or minimum
divergence estimators in information-theoretic literature.

• Bayesian posterior estimators: based on conjugate priors to keep
computations fast, simple and in closed form.

• Shrinkage estimators: regularised estimators based either on
James-Stein or Bayesian shrinkage results.
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Maximum Likelihood and Maximum Entropy Estimators

The classic estimators for (conditional) probabilities and (partial)
correlations / regression coefficients have known limitations:

• maximum likelihood estimates are unstable in most multivariate
problems, both discrete and continuous;

• for the multivariate Gaussian distribution, James & Stein proved in
the 1950s that the maximum likelihood estimator for the mean is
not admissible in 3+ dimensions;

• partial correlations are often ill-behaved because of that, even with
Moore-Penrose pseudo-inverses;

• maximum likelihood estimates are non-smooth and create
problems when using the graphical model for inference.
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Maximum a Posteriori Bayesian Estimators

Bayesian posterior estimates are the sensible choice for parameter
estimation according to Koller’s & Friedman’s tome on graphical models.
Choices for the priors are limited (for computational reasons) to
conjugate distributions, namely:

• the Dirichlet for discrete models,

𝐷𝑖𝑟(𝛼𝑘 ∣ Π𝑋𝑖=𝜋)
data
⟶ 𝐷𝑖𝑟(𝛼𝑘 ∣ Π𝑋𝑖=𝜋 + 𝑛𝑘 ∣ Π𝑋𝑖=𝜋)

meaning that ̂𝑝𝑘 ∣ Π𝑋𝑖=𝜋 = 𝛼𝑘 ∣ Π𝑋𝑖=𝜋/ ∑𝜋 𝛼𝑘 ∣ Π𝑋𝑖=𝜋;
• the Inverse Wishart for Gaussian models,

𝐼𝑊(Ψ, 𝑚)
data
⟶ 𝐼𝑊(Ψ + 𝑛Σ, 𝑚 + 𝑛).

In both cases, the only free parameter with a non-informative prior is the
equivalent or imaginary sample size, which gives the relative weight of
the prior compared to the observed sample.
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Bayesian LASSO and Ridge Regression

Gaussian graphical models, being closely related with linear regression,
have also used ridge regression (𝐿2 regularisation) and LASSO (𝐿1
regularisation) in their Bayesian capacity.

LASSO corresponds to a Laplace prior on the regression coefficients,

𝛽𝑘 ∣ 𝜎2 ∼ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0, 𝜎2).

Ridge Regression corresponds to a Gaussian prior,

𝛽𝑘 ∣ 𝜎2 ∼ 𝑁(0, 𝜎2).

In both cases, tuning the 𝜎2 parameter is crucial, as it takes the role of the
𝜆 regularisation parameter found in the original frequentist definitions of
these methods. Furthermore, excessive regularisation might lead to zero
coefficients that would make a node independent of its parents.
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Shrinkage, James-Stein Estimation

Shrinkage estimation is based on results from James & Stein on the
estimation of the mean of a multivariate Gaussian distribution, and takes
the form

̃𝜃 = 𝜆𝑡 + (1 − 𝜆) ̂𝜃 𝜆 ∈ [0, 1]

where the optimal 𝜆 (with respect to squared loss) can be estimated in
closed form as

𝜆∗ = min (
∑𝑘 VAR( ̂𝜃𝑘) − COV( ̂𝜃𝑘, 𝑡𝑘) + Bias( ̂𝜃𝑘) E( ̂𝜃𝑘 − 𝑡𝑘)

∑𝑘( ̂𝜃𝑘 − 𝑡𝑘)2
, 1) .

The James-Stein estimator ̃𝜃 dominates the maximum likelihood
estimator ̂𝜃 and converges to the latter as the sample size grows. It can
be interpreted as an empirical Bayes estimator.
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Shrinkage, James-Stein Estimation

For discrete data, conditional probabilities 𝜋𝑖𝑘 ∣ 𝑗 are estimated as

̃𝜋𝑖𝑘𝑗 = 𝜆∗𝑡𝑖𝑘𝑗 + (1 − 𝜆∗) ̂𝜋𝑖𝑘𝑗, 𝜆∗ = min (
1 − ∑𝑘 ̂𝜋2

𝑖𝑘𝑗

(𝑛 − 1) ∑𝑘(𝑡𝑖𝑘𝑗 − ̂𝑝𝑖𝑘𝑗)2 , 1) ,

where 𝑡 is the uniform (discrete) distribution.

For continuous data, correlations end up being estimated from the
shrunk covariance matrix Σ̃

�̃�𝑖𝑖 = �̂�𝑖𝑖, �̃�𝑖𝑗 = (1 − 𝜆∗)�̂�𝑖𝑗, 𝜆∗ = min (
∑𝑖≠𝑗 VAR(�̂�𝑖𝑗)

∑𝑖≠𝑗 �̂�2
𝑖𝑗

, 1)

where 𝑡 is diag(Σ̂). Σ̃ is guaranteed to have full rank, so it can be safely
inverted to get partial correlations.
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bnlearn: Parameter Learning, DBNs

Parameter learning is implemented in bn.fit() and defaults to
method = "mle" ; for discrete data we can also use Bayesian posterior
estimation with method = "bayes" with an imaginary sample size iss .

fitted = bn.fit(asia.dag, asia, method = "mle")
coef(fitted$X)

E
X no yes
no 0.95659 0.00541
yes 0.04341 0.99459

fitted = bn.fit(asia.dag, asia, method = "bayes", iss = 20)
coef(fitted$X)

E
X no yes
no 0.9556 0.0184
yes 0.0444 0.9816
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bnlearn: Parameter Learning, GBNs

bnlearn implements only method = "mle-g" for GBNs, but we can use
penalized() to replace parameter estimates with ridge, LASSO, or
elastic net estimates.

library(penalized)
fitted = bn.fit(marks.dag, marks, method = "mle-g")
coef(fitted$STAT)

(Intercept) ALG ANL
-11.192 0.765 0.316

fitted$STAT = penalized(response = marks[, "STAT"],
penalized = marks[, parents(fitted, "STAT")],
lambda2 = 100, model = "linear", trace = FALSE)

coef(fitted$STAT)
(Intercept) ALG ANL

-10.788 0.753 0.321

We can also fit the parameters directly using a DAG and any other
regression functions, and collecting their coefficients in a BN with
custom.fit() .
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bnlearn: Parameter Learning, CGBNs

Same for CGBNs.

library(lme4)
data(rats, library = "gRbase")
rats[, c("W1", "W2")] = list(as.numeric(rats$W1), as.numeric(rats$W2))
names(rats) = c("SEX", "DRUG", "WL1", "WL2")
fitted = bn.fit(rats.dag, data = rats, method = "mle-cg")
coef(fitted$WL2)

0 1 2
(Intercept) 1.028 -1.68 -1.835
WL1 0.889 1.36 0.819

ldist = list(coef = array(0, dim = c(2, 3),
dimnames = list(c("(Intercept)", "WL1"), NULL)), sd = rep(0, 3))

model = lmer(WL2 ~ WL1 + (1 | DRUG), data = rats)
for (i in seq(ncol(ldist$coef)))
ldist$coef[, i] = fixef(model) + ranef(model)[["DRUG"]][i, ]

for (i in seq(length(ldist$sd)))
ldist$sd[i] = sd(resid(model)[rats[, "DRUG"] == levels(rats[, "DRUG"])[i]])

fitted$WL2 = ldist
coef(fitted$WL2)

0 1 2
(Intercept) 1.57 2.36 -1.42
WL1 1.54 2.32 -1.45
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General Bayesian Networks

The definition of a BN just says

P(X, Θ) =
𝑁

∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

) where Π𝑋𝑖
= {parents of 𝑋𝑖}.

We are free to choose our P(𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

), treating any hierarchical
Bayesian model as a BN and using it as such. However, we should
include nodes only for the variables in the model, not their parameters,
to be able to interpret it in the same way as a classical BN.
What we gain:
• Freedom! Power!
• The ability to use Bayesian modelling software such as Stan.

What we lose:
• Closed-form results for density functions, parameter estimates,
scores, tests, etc.

• The ability to use bnlearn.
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A General BN

A simple example is the RELIABILITY TESTINGmodel for two-phase
testing (somewhat amended here) by Fenton & Neil, assessing the
distribution of the number of failures based on the number of accesses
and the system’s reliability.

ACCESS1 ACCESS2

FAILNUM1 FAILNUM2

FAILPROB

FAILPROB ∼ Beta (2, 5)
ACCESS1 ∼ Pois (20)
ACCESS2 ∼ Pois (400)

FAILNUM1 ∼ Bi (ACCESS1, FAILPROB)
FAILNUM2 ∼ Bi (ACCESS2, FAILPROB)
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rstan: Building a General BN as a Hierarchical Model (I)

This is the Stanmodel specification to generate observations from the
BN, given its parameters. We store that as a string in a variable stancode
to use Stan through R via rstan.

data {
vector[2] Fp; // shape parameters for the beta distribution.
real A1p; // expected accesses per second, phase 1
real A2p; // expected accesses per second, phase 2.

}
generated quantities {
real FAILPROB;
int ACCESS1;
int ACCESS2;
int FAILNUM1;
int FAILNUM2;

FAILPROB = beta_rng(Fp[1], Fp[2]);
ACCESS1 = poisson_rng(A1p);
ACCESS2 = poisson_rng(A2p);
FAILNUM1 = binomial_rng(ACCESS1, FAILPROB);
FAILNUM2 = binomial_rng(ACCESS2, FAILPROB);

}
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rstan: Building a General BN as a Hierarchical Model (II)

library(rstan)
reliability.bn = stan_model(model_code = stancode)
params = list(
Fp = c(2, 5),
A1p = 20,
A2p = 400

)
data = sampling(reliability.bn, algorithm = "Fixed_param", data = params,

thin = 10, iter = 500, seed = 42)
nodes = c("FAILPROB", "ACCESS1", "ACCESS2", "FAILNUM1", "FAILNUM2")
reliability = as.data.frame(extract(data)[nodes])

Unlike bnlearn’s bn.fit objects, rstan’s models are not accessible
programmatically from R because they live in the C++ code of the Stan
library.
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Some Plots of the Empirical Marginal Distributions
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Vector Auto-Regressive Processes

Multivariate time series canmodelled as vector auto-regressive (VAR)
processes. A VAR(X, 𝑝) of order 𝑝 has the form

X(𝑡) = 𝐴1X(𝑡 − 1) + … + 𝐴𝑝X(𝑡 − 𝑝) + 𝐵 + 𝜀X, (𝑡)

where X(𝑡) are the variables measured at time 𝑡.
In graphical form, for instance (𝑝 = 2):

X1(t−1)

X1(t−2) X1(t)

X2(t−1)

X2(t−2)

X2(t)

X3(t−1)X3(t−2)
X3(t)

Does it remind you of something?
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Dynamic BNs

The classic CANADAmacroeconomics time series, studied by Lütkepohl
and Pfaff. E is employment, P is productivity, RW is the real wage and U is
the unemployment rate.

E0

P0

RW0

U0

E1

P1

RW1

U1
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The Graphical Structure

Any stochastic process in discrete time has a similar graphical
representation and can be treated as a BN. In such a dynamic BN:
• All variables X become separate nodes in each time point.
• Arcs can only go forward in time: the graph is still a DAG.
• Wemay allow instantaneous arcs between nodes in the same time
point, but their interpretation is often not straightforward.

• We canmodel feedback loops between variables.

We typically assume that:
• arcs can only come from nodes in the previous time point (so, the
time series is of order 𝑝 = 1).

• no instantaneous arcs, unless time points are averages over periods.
• the time series is homogeneous and stationary.

We do not assume any particular distribution for the nodes.
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Rolled-Up and Unrolled Graphs for a Dynamic BN

With these assumptions, we can completely represent a dBN with:
• a 2-time BN representing the transition between two consecutive
time points;

• the marginal distribution of each variable in X, which models the
dBN at time 𝑡 = 0.

The 2-time BN has two representations: unrolled and rolled-up.
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RW0
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P
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2-Time BNs With and Without Instantaneous Arcs
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bnlearn: Creating a Dynamic BN for a VAR

canada.dag =
model2network("[P0][E0][U0][RW0][P1|P0][E1|E0:P0][U1|U0:E0:RW0][RW1|RW0:E0]")

P0.dist = list(coef = c("(Intercept)" = 408), sd = 4.23)
E0.dist = list(coef = c("(Intercept)" = 944), sd = 9.07)
U0.dist = list(coef = c("(Intercept)" = 9.34), sd = 1.6)
RW0.dist = list(coef = c("(Intercept)" = 944), sd = 9.07)
P1.dist = list(coef = c("(Intercept)" = 17.51, P0 = 0.96), sd = 0.70)
E1.dist = list(coef = c("(Intercept)" = 10.89, E0 = 1.04, P0 = 1.04), sd = 0.52)
U1.dist = list(coef = c("(Intercept)" = -17.85, E0 = 0.02, RW0 = -0.004,

U0 = 1.004), sd = 0.43)
RW1.dist = list(coef = c("(Intercept)" = 16.45, E0 = -0.04, RW0 = 1.03),

sd = 0.88)
ldist = list(P0 = P0.dist, E0 = E0.dist, U0 = U0.dist, RW0 = RW0.dist,

P1 = P1.dist, E1 = E1.dist, U1 = U1.dist, RW1 = RW1.dist)
canada.bn = custom.fit(canada.dag, ldist)

Code-wise, it looks much like creating a GBN. If the nodes were discrete,
the code would look like that for creating a DBN. With mixed node types,
the code would look like that for creating CGBNs or general BNs.
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Canonical Plots Work for Dynamic BNs as Well
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Many Models are Dynamic BNs
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Dynamic BN: Hidden Markov Models

Hidden Markov models (HMMs) are one of the most widespread
approaches to model phenomena with hidden state, that is, in which the
behaviour of the observed variables X depends on that of one or more
discrete latent variables Z as well as on other variables in X.

In dBN terms, an HMMmodel with 𝑀 latent variables can be written as

P (X(𝑡) ∣ X(𝑡−1), Z(𝑡)) =
𝑁

∏
𝑖=1

P (𝑋(𝑡)
𝑖 ∣ Π𝑋(𝑡)

𝑖
, Z(𝑡))

P (Z(𝑡)) =
𝑀
∏
𝑗=1

P (𝑍(𝑡)
𝑗 ∣ Π𝑍(𝑡)

𝑗
) ,

with the restriction that the parents of 𝑍(𝑡)
𝑗 can only be other latent

variables. In the vast majority of the literature all variables are assumed
to be discrete. Depending on the choice of Π𝑍(𝑡)

𝑗
, we can obtain various

HMM variants such as hierarchical HMMs and factorial HMMs.
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Dynamic BN: Vector Auto-Regressive Models

Vector auto-regressive models (VARs) are a straightforward multivariate
extension of univariate auto-regressive time series for continuous
variables.
VARs are defined as

X(𝑡) = 𝐴1X(𝑡−1) + … + 𝐴𝐿X(𝑡−𝐿) + 𝜀𝑡, 𝜀𝑡 ∼ 𝑁(0, Σ),

for some fixed Markov order 𝐿. We can rewrite that as

X(𝑡) ∣ X(𝑡−1), … , X(𝑡−𝐿) ∼ 𝑁 (𝐴1X(𝑡−1) + … + 𝐴𝐿X(𝑡−𝐿), 𝜀𝑡)

and then restrict the parents of each 𝑋(𝑡)
𝑖 to those for which the

corresponding regression coefficients in 𝐴1, … , 𝐴𝐿 are different from
zero using the one-to-one correspondence between regression
coefficients and partial correlations. Formally, 𝑋(𝑡−𝑙)

𝑗 ∈ Π𝑋(𝑡)
𝑖
if and only

if 𝐴𝑙[𝑖, 𝑗] ≠ 0, which makes it possible to write a VAR as a Gaussian dBN.
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Dynamic BNs: Kalman Filters

Kalman filters combine traits of both HMMs and VARs: like VARs, they are
linear Gaussian dBNs; but they also have latent variables like HMMs.
In their simplest form, Kalman Filters include a layer of one or more
latent variables that model the unobservable part of the phenomenon,

Z(𝑡) = 𝐴Z(𝑡−1) + 𝐵U(𝑡) + 𝜁𝑡, 𝜁𝑡 ∼ 𝑁(0, Ψ)

feeding into one or more observed variables

X(𝑡) = 𝐶Z(𝑡) + 𝐷U(𝑡) + 𝜀𝑡, 𝜀𝑡 ∼ 𝑁(0, Σ)

with independent Gaussian noise added in both layers. Both layers often
include additional (continuous) explanatory variables U and can also be
augmented with (discrete) switching variables to allow for different
regimes. If we exclude the latter, the assumption is that the system is
jointly Gaussian: that makes it possible to frame Kalman filters as dBNs
in the same way we did for VARs.
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Relevant Functions in bnlearn

• creating BNs: model2network() custom.fit() .

• plotting DAGs: graphviz.plot() , along with nodeRenderInfo() ,
edgeRenderInfo() and renderGraph() from the Rgraphviz package.

• plotting BNs: graphviz.chart() .

Borrowed from rstan: stan_model() and sampling() .
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Summary and Remarks

• BNs can take quite different forms depending on what assumptions
wemake on their local/global distributions and on their structure.

• Discrete BNs (DBNs) model categorical data using conditional
probability tables (or equivalently multinomial logistic regressions).

• Gaussian BNs (GBNs) model continuous data as multivariate normal
distributions (or equivalently linear regressions).

• Conditional Gaussian BNs (CGBNs) model mixed discrete and
continuous data as a mixture model (like a mixed-effects model).

• General BNs are essentially hierarchical Bayesian models.

• Dynamic BNs (dBNs) model a variety of time series and stochastic
processes in discete time.

Next:
• How do wemake a computer system answer questions using a BN?
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Thanks!

Any questions?
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Events, Evidence and Queries

A BN represents a working model of the world that a computer can
understand; but how does a computer system use it to help and perform
its assigned task?

We ask questions, and the computer system performs probabilistic
inference to answer them and decide what to do in the process.

Questions that can be asked are called queries and are typically about an
event of interest given some evidence. The evidence is the input to the
computer system (“Someone with a high-school degree.”) and the event
is the output (“A man driving a car.”). This is often called belief update:
we observe some evidence and we update our beliefs before taking
action.
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Events, Evidence and Queries

The twomost common queries are
• conditional probability queries (“What is the probability that
someone with high-school degree is a man driving a car?”); and

• most probable explanation queries (“What is the most probable sex
andmode of transportation for someone with a high-school
degree?”)

In both cases the evidence is hard evidence: we set some variables to
particular values. Then the computer system checks how the
probabilities of other variables change and provides an answer to the
query.

Nomore manual probability calculations..

NOTE: we will initially consider only DBNs for ease of exposition, and get
back to other types of BNs later.
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The Effects of Conditioning on Hard Evidence
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The original survey BN (left), and the posterior BN with hard evidence on
Education (right). 3



Conditional Probability Queries in Pictures

young 35%

adult 57%

old 9%

A

high 0%
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self 8%
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other 16%
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THIS IS THE
EVIDENCE WE
CONDITION ON

THIS IS THE QUERY
NODE WE ARE
INTERESTED IN
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Maximum a Posteriori Queries in Pictures
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Exact and Approximate Inference

There are two approaches to answer queries using BNs.

Exact algorithms use the DAG to schedule and perform repeated
applications of Bayes theorem on the local probability distributions in
the BN. In other words, the computer system uses the DAG to perform all
the math we did by hand in earlier lectures.

The two best known are
• variable elimination; and
• belief updates based on junction trees.

PROS: they return exact values for the probabilities of interest.
CONS: they do not scale well when BNs have many nodes andmany arcs.
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Exact and Approximate Inference

Approximate algorithms use the BN as a model of the world in a very
literal sense. In the real world to answer some question in a scientific,
rigorous way we would perform an experiment and observe the
outcome. Approximate algorithms imitate this process by generating
random observations from the BN, thus running a simulated experiment
that approximates reality.

The two best known are
• logic sampling; and
• likelihood weighting.

PROS: they scale really well when BNs have many nodes andmany arcs.
CONS: they return approximate, estimated values for the probabilities of
interest.
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The Logic Sampling Algorithm

INPUT: a BN, evidence 𝐸 and query event 𝑄.
1. Order the variables in X according to the topological ordering in the

DAG (from top to bottom), so that parents come before children.

2. Set 𝑛𝐸 = 0 and 𝑛𝐸,𝑄 = 0.
3. For a suitably large number of samples x:

3.1 generate a random value from each 𝑋𝑖 ∣ Π𝑋𝑖
taking advantage of the fact

that, thanks to the topological ordering, by the time we are considering
𝑋𝑖 we have already generated the values of all its parents Π𝑋𝑖

;

3.2 if x includes 𝐸, set 𝑛𝐸 = 𝑛𝐸 + 1;

3.3 if x includes both 𝑄 and 𝐸, set 𝑛𝐸,𝑄 = 𝑛𝐸,𝑄 + 1.

4. The answer to the query is the estimated probability 𝑛𝐸,𝑄/𝑛𝐸.

8



A Survey Example

Consider:
• the evidence: someone whose Education (E) level is a high school
diploma (high)...

• the event: ... is a man (S is equal to M) uses a car as a means of
Transportation (T).

We will answer this query using the different inference algorithms.

A

E = "high"

O R

S = "M"

T = "car"

9



Stepping Through Logic Sampling

First, we sample from the BN with rbn() , which takes a bn.fit object
and the number of random samples to generate as arguments.

particles = rbn(bn, 10^6)
head(particles, n = 5)

A E O R S T
1 old high emp big M train
2 old high emp big M car
3 adult high emp big F car
4 old high emp big M other
5 young high emp big M car

The samples have the correct types and format as derived from the BN,
and they are stored in a data frame that has the same structure as that of
the data that were used to learn the BN (if any).

10



Stepping Through Logic Sampling

Then we count howmany of those samples that match the evidence 𝐸 to
estimate P(𝐸).

partE = particles[(particles[, "E"] == "high"), ]
nE = nrow(partE)

We also count howmany of those samples that match the evidence 𝐸
and the query event 𝑄 to estimate P(𝑄, 𝐸).

partEQ =
partE[(partE[, "S"] == "M") & (partE[, "T"] == "car"), ]

nEQ = nrow(partEQ)

Finally, we estimate

P(𝑄 ∣ 𝐸) =
P(𝑄, 𝐸)

P(𝐸)
.

nEQ/nE
[1] 0.343

11



The cpquery() Function

These steps are implemented in cpquery() , with the obvious
arguments:
• event is 𝑄;
• evidence is 𝐸;
• method is "ls" for logic sampling (the default);
• n is the number of random samples.

cpquery(bn, event = (S == "M") & (T == "car"),
evidence = (E == "high"), method = "ls", n = 10^6)

[1] 0.343

Both event end evidence are expressions that are evaluated on the
random samples much like subset() would, so they must evaluate to a
vector of TRUE and FALSE values (hence & and not &&).

12



More Advanced Queries with cpquery()

Specifying the arguments requires some care, but the result is an
extremely flexible framework to compute the probability of arbitrary
combinations of events.

As an example of a more complex query, we can compute

P(S = "M", T = "car" ∣{A = "young", E = "uni"} ∪ {A = "adult"}),

the probability of a man travelling by car given that his Age is "young"
and his Education is "uni" or that he is an "adult" , regardless of his
Education. That would be:

cpquery(bn, event = (S == "M") & (T == "car"),
evidence = ((A == "young") & (E == "uni")) | (A == "adult"))
[1] 0.349

13



Stepping Through Logic Sampling

nparticles = seq(from = 5 * 10^3, to = 10^5, by = 5 * 10^3)
prob = matrix(0, nrow = length(nparticles), ncol = 20)
for (i in seq_along(nparticles))
for (j in 1:20)

prob[i, j] = cpquery(bn, event = (S == "M") & (T == "car"),
evidence = (E == "high"), method = "ls", n = 10^6)

number of particles
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The Limits of Logic Sampling

Notice anything in the figure in the previous slide?

• Logic sampling is obviously affected by sampling variability: every
time we run it we get a different estimate of the probability that is the
answer to our query because the random samples we generate will be
different.

• Sampling variability decreases with the number of samples we
generate, but it never goes to zero: there is always some uncertainty
around the exact value we estimate (here 0.343 ± 0.001).

• Remember that we essentially discard all random samples that do not
match the evidence we condition on, so if the evidence has low
probability we are throwing out almost all samples we generate.

15



The Likelihood Weighting Algorithm

An improvement over logic sampling, designed to solve this problem, is
the likelihood weighting algorithm. Unlike logic sampling, all the
random samples generated by likelihood weighting include the evidence
𝐸 by design.

1. Order the variables in X according to the topological ordering in the
DAG (from top to bottom), so that parents come before children.

2. Set 𝑤𝐸 = 0 and 𝑤𝐸,𝑄 = 0.
3. For a suitably large number of samples x:

3.1 generate a random value from each 𝑋𝑖 ∣ Π𝑋𝑖
and fix the relevant

variables to the values specified by the evidence 𝐸.
3.2 compute the weight 𝑤x = P(𝐸).
3.3 set 𝑤𝐸 = 𝑤𝐸 + 𝑤x;
3.4 if x includes 𝑄 , set 𝑤𝐸,𝑄 = 𝑤𝐸,𝑄 + 𝑤x.

4. The answer to the query is the estimated probability 𝑤𝐸,𝑄/𝑤𝐸.

16



Stepping Through Likelihood Weighting

We do not want to sample from the original BN, but from the BN in which
all the nodes covered by 𝐸 are fixed. This network is called the mutilated
network.
Compare:
coef(bn$E)

, , S = M

A
E young adult old
high 0.75 0.72 0.88
uni 0.25 0.28 0.12

, , S = F

A
E young adult old
high 0.64 0.70 0.90
uni 0.36 0.30 0.10

parents(bn, "E")
[1] "A" "S"

mutbn = mutilated(bn, list(E = "high"))
coef(mutbn$E)

high uni
1 0

parents(mutbn, "E")
character(0)

No parents, and the value is that in the
evidence with probability equal to 1.
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Stepping Through Likelihood Weighting

Simply sampling from mutbn is not a correct way of answering our query!
A simple empirical check tells us that the naive estimate we would draw
from mutbn is wrong, since it does not match the exact value we got
earlier.

particles = rbn(mutbn, 10^6)
partE = particles[(particles[, "E"] == "high"), ]
partEQ = partE[(particles[, "S"] == "M") &

(particles[, "T"] == "car"), ]
nrow(partEQ) / nrow(partE)

[1] 0.336

That is because nrow(partE) is identical to nrow(particles) by
construction, so the conditional probability is not computed correctly.
What we get is:

P(𝑄, 𝐸) =
𝑛𝐸,𝑄

𝑛
≠ P(𝑄 ∣ 𝐸).

18



Stepping Through Likelihood Weighting

The weights adjust for the fact that we are sampling from themutilated
BN instead of the original BN. The weights are just the likelihood
components associated with the nodes we are conditioning on (E in this
case):

w = logLik(bn, particles, nodes = "E", by.sample = TRUE)
wEQ = sum(exp(w[(particles[, "S"] == "M") &

(particles[, "T"] == "car")]))
wE = sum(exp(w))
wEQ/wE

[1] 0.343

NOTE: the likelihood of an observation has the samemathematical
expression as its probability, so for practical purposes here it is just
P(𝐸). logLik() returns log P(𝐸) in the code above.
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Stepping Through Likelihood Weighting

More conveniently, we can perform likelihood weighting with cpquery()
by setting method = "lw" and specifying the evidence as a named list
with one element for each node we are conditioning on.

cpquery(bn, event = (S == "M") & (T == "car"),
evidence = list(E = "high"), method = "lw", n = 5 * 10^4)

[1] 0.344

The estimate we obtain is still very precise with small numbers of
random samples, as was the case for logic sampling, but the variability of
the estimated probabilities is actually larger. There is no guarantee that
likelihoodweighting will always have lower variance than logic sampling.
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Stepping Through Likelihood Weighting

nparticles = seq(from = 5 * 10^3, to = 10^5, by = 5 * 10^3)
prob = matrix(0, nrow = length(nparticles), ncol = 20)
for (i in seq_along(nparticles))
for (j in 1:20)

prob[i, j] = cpquery(bn, event = (S == "M") & (T == "car"),
evidence = list(E = "high"), method = "lw",
n = nparticles[i])
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Then Why Use Likelihood Weighting?

Logic sampling will be computationally inefficient and very inaccurate if
P(𝐸) is small because most random samples will be discarded without
contributing to the estimation of P(𝑄 ∣ 𝐸).

extreme.dag = model2network("[A][B|A]")
A.prob = array(c(0.999999, 0.000001), dim = 2,

dimnames = list(A = c("a1", "a2")))
B.prob = array(c(0.5, 0.5, 0.75, 0.25), dim = c(2, 2),

dimnames = list(B = c("b1", "b2"), A = c("a1", "a2")))
extreme.bn = custom.fit(extreme.dag, list(A = A.prob, B = B.prob))
cpquery(extreme.bn, event = (B == "b2"), evidence = (A == "a2"),
method = "ls", n = 10^6)
[1] 0.333

This simply does not happen with likelihood weighting.

cpquery(extreme.bn, event = (B == "b2"), evidence = list(A = "a2"),
method = "lw", n = 5 * 10^3)
[1] 0.249
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A Comparison for Different Numbers of Random Samples
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Extensions of Likelihood Weighting

The event is still a general expression, which means it is possible to
describe complex events. However, likelihood weighting relies on the
fact that the evidence is fixed to a single value to compute the weights.
In bnlearn this assumption is relaxed: the event can take more than one
value for each variable. All combinations of values are given the same
probability so as not to alter the weights.

cpquery(bn, event = (S == "M") & (T == "car"),
evidence = list(A = c("young", "adult")), method = "lw", n = 10^6)
[1] 0.337

cpquery(bn, event = (S == "M") & (T == "car"),
evidence = list(A = "young"), method = "lw", n = 10^6) * 0.5 +

cpquery(bn, event = (S == "M") & (T == "car"),
evidence = list(A = "adult"), method = "lw", n = 10^6) * 0.5
[1] 0.337
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Sampling and Conditioning

Last but not least, we can also use cpdist() to generate random
samples conditional on some evidence 𝐸. Likelihood weighting works
best, and attaches the weights to the samples (for use in later analyses).

cpdist(bn, nodes = c("S", "T"), evidence = list(A = "adult"),
method = "lw", n = 5)

S T
1 M car
2 F car
3 F car
4 M car
5 F car

Logic sampling works less well because it often returns far fewer
observations than requested.

cpdist(bn, nodes = c("S", "T"), evidence = (A == "young"),
method = "ls", n = 5)
[1] S T
<0 rows> (or 0-length row.names)
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The Junction Tree Algorithm

1. Moralise: create the moral graph of the BN ℬ.
2. Triangulate: break every cycle spanning 4 or more nodes into

sub-cycles of exactly 3 nodes by adding arcs to the moral graph, thus
obtaining a triangulated graph.

3. Cliques: identify the cliques 𝐶1, … , 𝐶𝑘 of the triangulated graph, i.e.,
maximal subsets of nodes in which each element is adjacent to all the
others.

4. Junction Tree: create a tree in which each clique is a node, and
adjacent cliques are linked by arcs. The tree must satisfy the running
intersection property: if a node belongs to two cliques 𝐶𝑖 and 𝐶𝑗, it
must be also included in all the cliques in the (unique) path that
connects 𝐶𝑖 and 𝐶𝑗.

5. Parameters: use the parameters of the local distributions of ℬ to
compute the parameter sets of the compound nodes of the junction
tree.
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Creating the Moral Graph

We saw how to create a moral graph earlier when introducing
d-separation:

survey.dag = model2network("[A][S][E|A:S][O|E][R|E][T|O:R]")
survey.moral = moral(survey.dag)

NOTE: different DAGs can express the same set of dependencies and
therefore will have the samemoral graph. This in turn means that exact
inference with junction trees will return the same results for conditional
probability andmaximum a posteriori queries. They are probabilistically
indistinguishable.
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Different DAGs, Same Moral Graph

survey.dag1 = model2network("[A][S][E|A:S][O|E][R|E][T|O:R]")
survey.dag2 = model2network("[A|E][S|A:E][E|O:R][O|R:T][R|T][T]")
graph.par(list(nodes = list(fontsize = 11)))
par(mfrow = c(1, 2))
graphviz.plot(moral(survey.dag1))
graphviz.plot(moral(survey.dag2))
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A

E

O

R

S

T
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Finding the Cliques

A

O S

E

R

T

Themoral graph is already
triangulated, and we can see three
cliques:

𝐶1 = {𝐴, 𝐸, 𝑆}
𝐶2 = {𝐸, 𝑂, 𝑅}
𝐶3 = {𝑂, 𝑅, 𝑇 }

with separators:

𝑆12 = {𝐸}
𝑆23 = {𝑂, 𝑅}

which we can use to build the
junction tree.

29



Building the Junction Tree
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Estimating the Parameters

In this example on the survey BN, the parameters for the cliques are:

Θ𝐶1
= P(𝐴, 𝐸, 𝑆) = P(𝐴) P(𝑆) P(𝐸 ∣ 𝐴, 𝑆)

Θ𝐶2
= P(𝐸, 𝑂, 𝑅) = P(𝑂 ∣ 𝐸) P(𝑅 ∣ 𝐸) P(𝐸)

Θ𝐶3
= P(𝑂, 𝑅, 𝑇 ) = P(𝑇 ∣ 𝑂, 𝑅) P(𝑂), P(𝑅)

and those for the separators are:

Θ𝑆12
= P(𝐸)

Θ𝑆23
= P(𝑂, 𝑅)

All can be readily computed from the local distributions in the BN.
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Estimating the Parameters

C1 = coef(bn$E)
for (a in A.lv)
for (s in S.lv)

C1[, a, s] = C1[, A = a, S = s] * coef(bn$A)[a] * coef(bn$S)[s]
C1

, , S = M

A
E young adult old
high 0.1350 0.2160 0.1056
uni 0.0450 0.0840 0.0144

, , S = F

A
E young adult old
high 0.0768 0.1400 0.0720
uni 0.0432 0.0600 0.0080

S12 = margin.table(C1, 1)
S12

E
high uni

0.745 0.255
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Estimating the Parameters

C2 = array(0, dim = c(2, 2, 2), dimnames = list(O = O.lv, R = R.lv, E = E.lv))
for (o in O.lv)
for (r in R.lv)

for (e in E.lv)
C2[o, r, e] = coef(bn$O)[o, e] * coef(bn$R)[r, e] * S12[e]

C2
, , E = high

R
O small big
emp 0.17890 0.5367
self 0.00745 0.0224

, , E = uni

R
O small big
emp 0.04685 0.1874
self 0.00407 0.0163
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Estimating the Parameters

S23 = margin.table(C2, 1:2)
S23

R
O small big
emp 0.2257 0.7241
self 0.0115 0.0387

C3 = coef(bn$T)
for (t in T.lv)

for (o in O.lv)
for (r in R.lv)

C3[t, o, r] = C3[t, o, r] *
S23[o, r]

C3
, , R = small

O
T emp self

car 0.108356 0.006455
train 0.094812 0.004150
other 0.022574 0.000922

, , R = big

O
T emp self

car 0.419963 0.027059
train 0.173778 0.008118
other 0.130333 0.003479
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Belief Propagation and Message Passing

O
E

R

O

R

T

E

O

R

A

S

E

Say we set Education to “high school”: we can change it directly in 𝑆12, but then
we need to propagate the changes to 𝐶1 and 𝐶2; and from 𝐶2 to 𝑆23 and to 𝐶3.
This is called belief propagation by message passing.
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Belief Propagation and Message Passing

new.S12 = S12
new.S12["high"] = 1
new.S12["uni"] = 0
new.S12

high uni
1 0

new.C1 = C1
for (e in E.lv)
for (a in A.lv)
for (s in S.lv)
new.C1[e, a, s] =
C1[e, a, s] / S12[e] *

new.S12[e]

new.C1
, , S = M

A
E young adult old

high 0.1811 0.2898 0.1417
uni 0.0000 0.0000 0.0000

, , S = F

A
E young adult old

high 0.1030 0.1878 0.0966
uni 0.0000 0.0000 0.0000

margin.table(new.C1, 1)
E
high uni

1 0

margin.table(new.C1) and new.S12 match as expected.
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Belief Propagation and Message Passing

new.C2 = C2
for (o in O.lv)
for (r in R.lv)
for (e in E.lv)
new.C2[o, r, e] =
C2[o, r, e] / S12[e] *

new.S12[e]
new.C2

, , E = high

R
O small big
emp 0.24 0.72
self 0.01 0.03

, , E = uni

R
O small big
emp 0 0
self 0 0

new.S23 = margin.table(new.C2, 1:2)
new.S23

R
O small big

emp 0.24 0.72
self 0.01 0.03

new.C3 = C3
for (t in T.lv)

for (o in O.lv)
for (r in R.lv)

new.C3[t, o, r] =
C3[t, o, r] / S23[o, r] *

new.S23[o, r]

Which completes the first iteration of belief propagation.
37



Belief Propagation and Message Passing

In more complex graphs andmore complex queries wemay needmore
than one iteration, but for this relatively simple network the belief
propagation is complete.

Computing P(S = "M", T = "car") at this point can be done easily by:

T = margin.table(new.C3, 1)
S = margin.table(new.C1, 3)
as.numeric(S["M"] * T["car"])

[1] 0.343

because Sex and Transportation are in different cliques and are
separated by Education, and therefore independent.
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gRain: Exact Inference with Junction Trees

Junction trees and belief propagation are implemented in the gRain
package. In order to answer our query, we convert the BN from bnlearn
to its equivalent in gRainwith as.grain() and we construct the junction
tree with compile() .

library(gRain)
junction = compile(as.grain(bn))

Then we set the evidence on the node, fixing it to “high school” with
probability 1 with setEvidence() .

jedu = setEvidence(junction, nodes = "E", states = "high")

And after that, we can perform our conditional probability query with
querygrain() , which also takes care of the belief propagation.

SxT.cpt = querygrain(jedu, nodes = c("S", "T"), type = "joint")
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Joint and Marginal Conditional Probabilities

The result of our query is the joint distribution of Sex and Travel given
that Education is “high school”.

SxT.cpt
T

S car train other
M 0.343 0.174 0.0962
F 0.217 0.110 0.0609

Similarly, we can use querygrain() compute the marginal distributions
of Sex and Travel conditional on Education.

querygrain(jedu, nodes = c("S", "T"), type = "marginal")
$S
S

M F
0.613 0.387

$T
T
car train other

0.559 0.283 0.157
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D-Separation and Conditional Independence

Interestingly, we can also compute the conditional distribution of Sex
given Travel (still conditioning on Education being “high school”), which
turns out to be:

querygrain(jedu, nodes = c("S", "T"), type = "conditional")
T

S car train other
M 0.613 0.613 0.613
F 0.387 0.387 0.387

This makes sense in the light of d-separation, which implies conditional
independence.

dsep(bn, x = "S", y = "T", z = "E")
[1] TRUE
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GBNs: Exact and Approximate Inference

Approximate inference works exactly in the same way as for DBNs.
Sampling from a linear regression model is easy:
1. plug in the values of the parents;
2. generate the residuals from a normal distribution with mean zero

and the specified variance.
The only major difference is that we cannot compute the probability of
events that correspond to a point value, because probability is
associated with intervals for continuous variables.

Exact inference is much easier than for DBNs. The distribution of some
event nodes 𝑄 conditional on evidence nodes 𝐸 = e has a (multivariate)
normal distribution with

𝝁 = 𝝁𝑄 + Σ𝑄𝐸Σ−1
𝐸𝐸(e − 𝝁𝐸) and Σ̃ = Σ𝑄𝑄 − Σ𝑄𝐸Σ−1

𝐸𝐸Σ𝐸𝑄.

Use truncated normals in the case of interval evidence.
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Marks: Analysis and Algebra

What is the probability that a student will get a distinction mark in
algebra after getting a lowmark at most in analysis?

cpquery(marks.bn, (ALG >= 70), evidence = (ANL <= 50), method = "ls")
[1] 0.0015

cpquery(marks.bn, (ALG >= 70), evidence = list(ANL = c(0, 50)), method = "lw")
[1] 0.00165

mvn = gbn2mvnorm(marks.bn)
mu.tilde = mvn$mu["ALG"] + mvn$sigma["ANL", "ALG"] / mvn$sigma["ANL", "ANL"] *
(50 - mvn$mu["ANL"])

sigma.tilde = mvn$sigma["ALG", "ALG"] -
1/mvn$sigma["ANL", "ANL"] * mvn$sigma["ANL", "ALG"]^2

pnorm(70, mean = mu.tilde, sd = sqrt(sigma.tilde), lower.tail = FALSE)
[1] 0.00936

mu.tilde = mvn$mu["ALG"] + mvn$sigma["ANL", "ALG"] / mvn$sigma["ANL", "ANL"] *
(20 - mvn$mu["ANL"])

pnorm(70, mean = mu.tilde, sd = sqrt(sigma.tilde), lower.tail = FALSE)
[1] 0.00000614
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CGBNs: Exact and Approximate Inference

Approximate inference for CGBNs is a combination of that for DBNs and
GBNs: all we said earlier applies.

Exact inference, on the other hand, combines the worst of both worlds.
We cannot work with the global distribution: like DBNs, it is too large.
And we cannot use the junction tree algorithm from above either: there
is an adaptation that works with CGBNs in package BayesNetBP, but it is
slower andmore memory intensive.
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Rats: Weight Loss Among Females

What are the distributions of weight loss among female rats after one and
two weeks?

particles =
cpdist(rats.bn, nodes = c("WL1", "WL2"), evidence = list(SEX = "F"),

method = "lw", n = 10^6)
summaries = sapply(particles, function(x) c(mean = mean(x), sd = sd(x)))
t(summaries)

mean sd
WL1 9.75 4.14
WL2 8.65 2.79

library(BayesNetBP)
node.class = sapply(rats.bn, function(ldist) is(ldist, "bn.fit.dnode"))
jtree = Initializer(dag = as.graphNEL(rats.dag), data = rbn(rats.bn, 10^5),

node.class = node.class, propagate = TRUE)
jtree = AbsorbEvidence(jtree, "SEX", "F")
SummaryMarginals(Marginals(jtree, c("WL1", "WL2")))

Mean SD n
WL1 9.77 4.14 3
WL2 8.66 2.80 3
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General BNs: Exact and Approximate Inference

Exact inference is impossible: it relies on having closed-form
representations of the joint distribution of arbitrary subsets of nodes.

Approximate inference, on the other hand, can take advantage of all the
advanced Monte Carlo samples. rstanworks very well for this.
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Reliability: Can We Say We are Reliable?

If I have a somewhat reliable system, what is the probability that my
reliability is greater than 99% if I observe 5 failures in the first phase and
20 failure is the second phase?

params = list(
Fp = c(2, 50),
A1p = 20,
A2p = 400

)
data = sampling(reliability.bn, algorithm = "Fixed_param", data = params,

iter = 10^5, seed = 42)
nodes = c("FAILPROB", "ACCESS1", "ACCESS2", "FAILNUM1", "FAILNUM2")
particles = as.data.frame(extract(data)[nodes])

partE = particles[(particles[, "FAILNUM1"] < 5) && (particles[, "FAILNUM2"] < 20), ]
nE = nrow(partE)
partEQ = partE[partE[, "FAILPROB"] < 0.01, ]
nEQ = nrow(partEQ)
nEQ/nE

[1] 0.0927

47



Relevant Functions in bnlearn

• as.grain() to export a fitted BN from bnlearn to gRain.

• rbn() to generate random samples from a BN.

• cpdist() to generate random samples from a BN conditional on
some evidence.

• cpquery() to perform approximate inference with logic sampling and
likelihood weighting.

Borrowed from BayesNetBP: Initializer() , AbsorbEvidence() ,
Marginals() .
Borrowed from gRain: compile() , setEvidence() , querygrain() .
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Summary and Remarks

1. Models in machine learning must be able to decide whether to
perform particular actions given evidence on the surrounding
environment.

2. The basis of these decisions are the predictions and the conditional
probabilities computed after incorporating evidence into the model.

3. In the context of BNs computing these probability is called inference.

4. There are two classes of algorithms to perform inference:
approximate and exact algorithms.

5. Approximate algorithms generate random samples to simulate
real-world experiments.

6. Exact algorithms automate the mathematical steps we would perform
tomanipulate the probabilities in the model.
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Thanks!

Any questions?
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Learning a Bayesian Networks

Model selection and estimation are collectively known as learning, and
are usually performed as a two-step process:
1. structure learning, learning the graph structure from the data;
2. parameter learning, learning the local distributions implied by the

graph structure learned in the previous step.

This workflow is implicitly Bayesian: given a data set 𝒟 we have

P(ℳ ∣ 𝒟)⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

and structure learning is done in practice as

P(𝒢 ∣ 𝒟) ∝ P(𝒢) P(𝒟 ∣ 𝒢) = P(𝒢) ∫ P(𝒟 ∣ 𝒢, Θ) P(Θ ∣ 𝒢)𝑑Θ.
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Local Distributions: Divide and Conquer

Both are computationally hard, but they are still feasible thanks to the
decomposition of X into local distributions. Under some assumptions,
we can use local computations and we never need to manipulate more
than one at a time.
Structure learning boils down to

P(𝒟 ∣ 𝒢) = ∫
𝑁

∏
𝑖=1

[P(𝑋𝑖 ∣ Π𝑋𝑖
, Θ𝑋𝑖

) P(Θ𝑋𝑖
∣ Π𝑋𝑖

)] 𝑑Θ

=
𝑁

∏
𝑖=1

[∫ P(𝑋𝑖 ∣ Π𝑋𝑖
, Θ𝑋𝑖

) P(Θ𝑋𝑖
∣ Π𝑋𝑖

)𝑑Θ𝑋𝑖
]

and parameter learning boils down to

P(Θ ∣ 𝒢, 𝒟) =
𝑁

∏
𝑖=1

P(Θ𝑋𝑖
∣ Π𝑋𝑖

, 𝒟).
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Prior Elicitation versus Data

For both parameter and structure learning, we can rely either on
• eliciting information from experts, drawing on the available prior
knowledge on the variables in X;

• using available data and extract the information the contain.

In structure learning, elicitation involves favouring or penalising the
inclusion of specific (patterns of) arcs in the DAG. In parameter learning,
it means partially or completely specifying the parameters of local
distribution, or constraining them in various ways.
There are pros and cons to either approach:
• it maybe difficult to find experts, or it may be difficult to find data,
depending on the phenomenon;

• the data may be noisy or may not fit distributional assumptions;
• it is usually difficult for experts to suggest values for the parameters;
• data may be affected by sampling bias, experts may be affected by
personal biases.
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Assumptions for Structure Learning from Data

• There must be a one-to-one correspondence between the nodes in
the DAG and the random variables in X. There must not be multiple
nodes which are deterministic functions of a single variable.

• All the relationships between the variables in X must be conditional
independencies, because they are by definition the only kind of
relationships that can be expressed by a BN.

• Every combination of the possible values of the variables in X must
represent a valid, observable (even if really unlikely) event. This
assumption implies a strictly positive global distribution, which is
needed to a uniquely identifiable model.

• Observations are treated as independent realisations of the set of
nodes. If some form of temporal or spatial dependence is present, it
must be specifically accounted for in the definition of the network, as
in dynamic BNs.
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Classes of Structure Learning Algorithms from Data

Despite the (sometimes confusing) variety of theoretical backgrounds
and terminology, structure learning algorithms can all be traced to only
three approaches:

• Constraint-based algorithms: they use statistical tests to learn
conditional independence relationships (called “constraints” in this
setting) from the data and assume that the DAG is a perfect map to
determine the correct network structure.

• Score-based algorithms: they score each DAG for its goodness of fit,
and then find the DAG that maximises that score.

• Hybrid algorithms: conditional independence tests are used to learn
at least part of the conditional independence relationships from the
data, thus restricting the search space for a subsequent score-based
search. The latter determines which edges are actually present in
the graph and their direction.
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Constraint-Based Structure Learning Algorithms

C
A B

D
E

F

CPDAG
Graphical

separation

Conditional

independence tests

One way to learn the structure of a BN is to check which conditional
independence constraints hold using a suitable conditional
independence test. We can identify a single equivalence class in this way.
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Assuming a Perfect Map

BNs are defined from graphical separation:

A ⟂⟂𝐺 B ∣ C ⟹ A ⟂⟂𝑃 B ∣ C.

However, constraint-based algorithms also imply the reverse:

A ⟂⟂𝑃 B ∣ C ⟺ A ⟂⟂𝐺 B ∣ C.

This is a much stronger assumption, which has pros and cons:
• it is impossible to verify;

• but it is a sufficient assumption to uniquely identify Markov
blankets, and thus we no longer need to assume thatP(X) is strictly
positive everywhere;

• not all P(X) have a faithful DAG.
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The Original: Inductive Causation Algorithm

1. For each pair of variables𝐴 and𝐵 inX search for setS𝐴𝐵 ⊂ X such
that 𝐴 and 𝐵 are independent given S𝐴𝐵 and 𝐴, 𝐵 ∉ S𝐴𝐵. If there
is no such a set, place an undirected arc between 𝐴 and 𝐵.

2. For each pair of non-adjacent variables 𝐴 and 𝐵 with a common
neighbour 𝐶, check whether 𝐶 ∈ S𝐴𝐵. If this is not true, set the
direction of the arcs 𝐴 −− 𝐶 and 𝐶 −− 𝐵 to 𝐴 → 𝐶 and 𝐶 ← 𝐵.

3. Set the direction of arcs which are still undirected by applying
recursively the following two rules:
3.1 if 𝐴 is adjacent to 𝐵 and there is a strictly directed path from 𝐴 to 𝐵

then set the direction of 𝐴 − 𝐵 to 𝐴 → 𝐵;
3.2 if 𝐴 and 𝐵 are not adjacent but 𝐴 → 𝐶 and 𝐶 − 𝐵, then change the

latter to 𝐶 → 𝐵.

4. Return the resulting (partially) directed acyclic graph.

Many newer algorithms: PC, Grow-Shrink, IAMB variants, HITON-PC, HPC.
8



Conditional Independence Tests: DBNs

Conditional independence tests for 𝑋 ⟂⟂𝑃 𝑌 ∣ Z are functions of the
observed frequencies {𝑛𝑖𝑗𝑘, 𝑖 = 1, … , 𝑅; 𝑗 = 1, … , 𝐶; 𝑘 = 1, … , 𝐿}.

Classic choices are:
• mutual information/log-likelihood ratio

MI(𝑋, 𝑌 ∣ Z) =
𝑅

∑
𝑖=1

𝐶
∑
𝑗=1

𝐿
∑
𝑘=1

𝑛𝑖𝑗𝑘

𝑛
log

𝑛𝑖𝑗𝑘𝑛++𝑘

𝑛𝑖+𝑘𝑛+𝑗𝑘
;

• and Pearson’s 𝑋2 with a 𝜒2 distribution

X2(𝑋, 𝑌 ∣ Z) =
𝑅

∑
𝑖=1

𝐶
∑
𝑗=1

𝐿
∑
𝑘=1

(𝑛𝑖𝑗𝑘 − 𝑚𝑖𝑗𝑘)2

𝑚𝑖𝑗𝑘
, 𝑚𝑖𝑗𝑘 =

𝑛𝑖+𝑘𝑛+𝑗𝑘

𝑛++𝑘
.

Both have an asymptotic 𝜒2
(𝑅−1)(𝐶−1)𝐿 null distribution.
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Conditional Independence Tests: GBNs

Conditional independence tests are functions of the partial correlations
𝜌𝑋𝑌 ∣ Z computed from Ω = Σ−1

{𝑋,𝑌 ,Z}.

Classic choices are:
• the exact 𝑡 test for Pearson’s correlation coefficient, defined as

t(𝑋, 𝑌 ∣ Z) = 𝜌𝑋𝑌 ∣ Z√
𝑛 − |Z| − 2
1 − 𝜌2

𝑋𝑌 ∣ Z
∼ 𝑡𝑛−|Z|−2;

• the asymptotic Fisher’s 𝑍 test, defined as

Z(𝑋, 𝑌 ∣ Z) = log (
1 + 𝜌𝑋𝑌 ∣ Z

1 − 𝜌𝑋𝑌 ∣ Z
)

√𝑛 − |Z| − 3
2

∼ 𝑁(0, 1)

where 𝑛 is the number of observations and |Z| is the number of
variables in Z.
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Conditional Independence Tests: CGBNs (I)

It is more complicated to specify tests for CLGBNs. Going case by case:
• if 𝑋, 𝑌 and Z are all categorical, we can use any test for DBNs;

• if 𝑋, 𝑌 and Z are all Gaussian, we can use any test for GBNs;

• if 𝑋 is categorical and 𝑌 is Gaussian (or vice versa), the simple test to
use is the mutual information

∝ log
P(𝑌 ∣ 𝑋, Z)

P(𝑌 ∣ Z)

in which both the numerator and the nominator are linear
regressions;

• the same is true if 𝑋 and 𝑌 are Gaussian, regardless of Z the simple
test is again the mutual information.
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Conditional Independence Tests: Conditional Gaussian (II)

• if 𝑋 and 𝑌 are categorical, and Z = {𝑍𝑐1
, … , 𝑍𝑐𝑙

, 𝑍𝑑1
, … , 𝑍𝑑𝑚

}
contains both categorical and Gaussian variables, with several
applications of Bayes theorem and the chain rule we get

P(𝑋 ∣ 𝑍𝑑1∶𝑑𝑚
, 𝑍𝑐1∶𝑐𝑙

)
P(𝑋 ∣ 𝑌 , 𝑍𝑑1∶𝑑𝑚

, 𝑍𝑐1∶𝑐𝑙
)

=

=
∏𝑙−1

𝑖=1 P(𝑍𝑐𝑖
∣ 𝑍𝑐𝑖+1∶𝑐𝑙

, 𝑋, 𝑍𝑑1∶𝑑𝑚
) P(𝑋, 𝑍𝑑1∶𝑑𝑚

)

∏𝑙−1
𝑖=1 P(𝑍𝑐𝑖

∣ 𝑍𝑐𝑖+1∶𝑐𝑙
, 𝑍𝑑1∶𝑑𝑚

) P(𝑍𝑑1∶𝑑𝑚
)

×

∏𝑙−1
𝑖=1 P(𝑍𝑐𝑖

∣ 𝑍𝑐𝑖+1∶𝑐𝑙
, 𝑋, 𝑌 , 𝑍𝑑1∶𝑑𝑚

) P(𝑋, 𝑌 , 𝑍𝑑1∶𝑑𝑚
)

∏𝑙−1
𝑖=1 P(𝑍𝑐𝑖

∣ 𝑍𝑐𝑖+1∶𝑐𝑙
, 𝑌 , 𝑍𝑑1∶𝑑𝑚

) P(𝑌 , 𝑍𝑑1∶𝑑𝑚
)

which is a chain of log-likelihood ratios that can be treated as a mutual
information test.
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The ASIA Example, Revisited

The asia data set is a small synthetic data set from Lauritzen and
Spiegelhalter that tries to implement a diagnostic model for lung
diseases (tuberculosis, lung cancer or bronchitis) after a visit to Asia.
• D : dyspnoea.
• T : tuberculosis.
• L : lung cancer.
• B : bronchitis.

• A : visit to Asia.
• S : smoking.
• X : chest X-ray.
• E : tuberculosis versus lung
cancer/bronchitis.

head(asia)
A S T L B E X D

1 no yes no no yes no no yes
2 no yes no no no no no no
3 no no yes no no yes yes yes
4 no no no no yes no no yes
5 no no no no no no no yes
6 no yes no no no no no yes
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bnlearn: Functions for Constraint-Based Learning
bnlearn implements several constraint-based algorithms, each with its
own function: gs() , iamb() , mmpc() , si.hiton.pc() , etc.
cpdag = si.hiton.pc(asia, undirected = FALSE)
cpdag

Bayesian network learned via Constraint-based methods

model:
[partially directed graph]

nodes: 8
arcs: 5

undirected arcs: 3
directed arcs: 2

average markov blanket size: 1.50
average neighbourhood size: 1.25
average branching factor: 0.25

learning algorithm:
Semi-Interleaved HITON-PC

conditional independence test:
Mutual Information (disc.)

alpha threshold: 0.05
tests used in the learning procedure: 152
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bnlearn: Parameters and Tuning Arguments

The arguments for the tuning parameters of constraint-based learning
algorithms have the same names in the respective functions:
• the first argument is the data.

• cluster : a cluster object from the parallel package to perform
steps in parallel for different nodes.

• test : the label of the test statistic.

• alpha : the type-I error threshold for the individual conditional
independence tests (i.e. without any multiplicity adjustment).

• skeleton : whether to learn just the skeleton instead of the CPDAG.

• debug : whether to print out the steps performed by the algorithm.
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bnlearn: Comparing DAGs

asia.dag = model2network("[A][S][T|A][L|S][B|S][D|B:E][E|T:L][X|E]")
cpdag2 = si.hiton.pc(asia, test = "x2", undirected = FALSE)
par(mfrow = c(1, 2))
graph.par(list(nodes = list(fontsize = 10)))
graphviz.compare(asia.dag, cpdag2)

A

B

D

E

L

S

T

X

A

B

D

E

L

S

T

X

Is it really as bad as it looks?
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Always Compare CPDAGs

par(mfrow = c(1, 2))
graph.par(list(nodes = list(fontsize = 10)))
graphviz.compare(cpdag(asia.dag), cpdag2)

A

B

D

E

L

S

T

X

A

B

D

E

L

S

T

X

It is impossible to uniquely identify the direction of some arcs: cpdag()
makes that apparent and allows for a fair comparison.
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bnlearn: The Debugging Output (I)

debugging.output = capture.output(
si.hiton.pc(asia, test = "mc-mi", undirected = FALSE, debug = TRUE)

)
head(debugging.output, n = 17)

[1] "----------------------------------------------------------------"
[2] "* forward phase for node A ."
[3] " * checking nodes for association."
[4] " > starting with neighbourhood ' '."
[5] " * nodes that are still candidates for inclusion."
[6] " > T has p-value 0.0472 ."
[7] " * nodes that will be disregarded from now on."
[8] " > S has p-value 0.171 ."
[9] " > L has p-value 0.516 ."

[10] " > B has p-value 0.0898 ."
[11] " > E has p-value 0.132 ."
[12] " > X has p-value 0.225 ."
[13] " > D has p-value 0.118 ."
[14] " @ T accepted as a parent/children candidate ( p-value: 0.0472 )."
[15] " > current candidates are ' T '."
[16] "----------------------------------------------------------------"
[17] "* forward phase for node S ."
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bnlearn: The Debugging Output (II)

The debugging output is useful to understand the steps the algorithms
perform and to investigate where things go wrong.

head(grep("phase", debugging.output, value = TRUE), n = 15)
[1] "* forward phase for node A ."
[2] "* forward phase for node S ."
[3] "* backward phase for candidate node B ."
[4] "* backward phase for candidate node E ."
[5] "* backward phase for candidate node X ."
[6] "* backward phase for candidate node D ."
[7] "* forward phase for node T ."
[8] "* backward phase for candidate node X ."
[9] "* backward phase for candidate node D ."

[10] "* forward phase for node L ."
[11] "* backward phase for candidate node B ."
[12] "* backward phase for candidate node E ."
[13] "* backward phase for candidate node X ."
[14] "* backward phase for candidate node D ."
[15] "* forward phase for node B ."
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bnlearn: The Debugging Output (III)

head(grep("phase|accepted", debugging.output, value = TRUE), n = 20)
[1] "* forward phase for node A ."
[2] " @ T accepted as a parent/children candidate ( p-value: 0.0472 )."
[3] "* forward phase for node S ."
[4] " @ L accepted as a parent/children candidate ( p-value: 0 )."
[5] "* backward phase for candidate node B ."
[6] " @ B accepted as a parent/children candidate ( p-value: 0 )."
[7] "* backward phase for candidate node E ."
[8] "* backward phase for candidate node X ."
[9] "* backward phase for candidate node D ."

[10] "* forward phase for node T ."
[11] " @ E accepted as a parent/children candidate ( p-value: 0 )."
[12] "* backward phase for candidate node X ."
[13] "* backward phase for candidate node D ."
[14] "* forward phase for node L ."
[15] " @ S accepted as a parent/children candidate ( p-value: 0 )."
[16] "* backward phase for candidate node B ."
[17] "* backward phase for candidate node E ."
[18] " @ E accepted as a parent/children candidate ( p-value: 0 )."
[19] "* backward phase for candidate node X ."
[20] "* backward phase for candidate node D ."
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bnlearn: Learning Markov Blankets and Neighbourhoods

In bnlearnwe canmanually reproduce all the steps performed by
constraint-based algorithms, either for debugging purposes or for
developing new algorithms.

• We can learn the neighbours of a particular node with any algorithm
that learns parents and children (HITON and MMPC).
learn.nbr(asia, node = "L", method = "si.hiton.pc", test = "mc-mi")

[1] "S" "E"

• We can learn the Markov blanket of a particular node with any
algorithm designed to do that (GS and the IAMB variants).
learn.nbr(asia, node = "L", method = "si.hiton.pc", test = "mc-mi")

[1] "S" "E"
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bnlearn: Conditional Independence Tests

Another very useful function is ci.test() , which performs a single
marginal or conditional independence test using the same backends as
constraint-based algorithms.

options(width = 70)

ci.test(x = "S", y = "E", z = "L", data = asia, test = "mc-mi")

Mutual Information (disc., MC)

data: S ~ E | L
mc-mi = 0.000004, Monte Carlo samples = 5000, p-value = 1
alternative hypothesis: true value is greater than 0

Arguments are much the same as before: test specifies the test label, B
the number of permutations. The test is for x ⟂⟂𝑃 y ∣ z where z can be
either absent (for marginal tests) or a vector of labels (to condition on
one or more variables).
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Pros and Cons of Constraint-based Algorithms

• They depend heavily on the quality of the conditional independence
tests they use: all proofs of correctness assume tests are always right.
• Asymptotic tests maymake algorithms under-perform.
• Permutation tests are often too slow, but can bemade better with

sequential permutations and semi-parametric permutations.
• Shrinkage tests work better than asymptotic test, but not by much.

• They are consistent, but converge may be slow.

• At any single time they evaluate a small subset of variables, which
makes them very memory efficient.

• They do not require multiple testing adjustment, they are
self-adjusting (nobody knows why exactly, though).

• They are embarrassingly parallel, so they scale extremely well.
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Score-based Structure Learning Algorithms

An exhaustive search unfeasible in practice, regardless of the goodness-
of-fit measure (called network score) used in the process. However, we
can use heuristics in combination with decomposable scores

Score(𝒢) =
𝑁

∑
𝑖=1

Score(𝑋𝑖 ∣ Π𝑋𝑖
)

such as

BIC(𝒢) =
𝑁

∑
𝑖=1

log P(𝑋𝑖 ∣ Π𝑋𝑖
) −

|Θ𝑋𝑖
|

2
log 𝑛

BDe(𝒢), BGe(𝒢) =
𝑁

∑
𝑖=1

log [∫ P(𝑋𝑖 ∣ Π𝑋𝑖
, Θ𝑋𝑖

) P(Θ𝑋𝑖
∣ Π𝑋𝑖

)𝑑Θ𝑋𝑖
]

if we only compare BNs that differ in only one local distribution at a time.
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The Hill-Climbing Algorithm

1. Choose an initial network structure 𝒢, usually (but not necessarily)
empty.

2. Compute the score of 𝒢, denoted as 𝑆𝑐𝑜𝑟𝑒𝒢 = Score(𝒢).

3. Set maxscore = 𝑆𝑐𝑜𝑟𝑒𝒢.

4. Repeat the following steps as long as maxscore increases:
4.1 for every possible arc addition, deletion or reversal not resulting in a

cyclic network:
4.1.1 compute the score of the modified network 𝒢∗, 𝑆𝑐𝑜𝑟𝑒𝒢∗ = Score(𝒢∗):
4.1.2 if 𝑆𝑐𝑜𝑟𝑒𝒢∗ > 𝑆𝑐𝑜𝑟𝑒𝒢, set 𝒢 = 𝒢∗ and 𝑆𝑐𝑜𝑟𝑒𝒢 = 𝑆𝑐𝑜𝑟𝑒𝒢∗.

4.2 update maxscore with the new value of 𝑆𝑐𝑜𝑟𝑒𝐺.

5. Return the directed acyclic graph 𝒢.

Other optimisation algorithms: tabu search, genetics algorithms, linear
programming, constrained optimisation and gradient descent.
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DBNs: The Bayesian Dirichlet Marginal Likelihood

If the data 𝒟 contain nomissing values and assuming:
• a Dirichlet conjugate prior (𝑋𝑖 ∣ Π𝑋𝑖

∼ Mul (Θ𝑋𝑖
∣ Π𝑋𝑖

) and
Θ𝑋𝑖

∣ Π𝑋𝑖
∼ Dir (𝛼𝑖𝑗𝑘), ∑𝑗𝑘 𝛼𝑖𝑗𝑘 = 𝛼𝑖 the imaginary sample size);

• positivity (all conditional probabilities 𝜋𝑖𝑗𝑘 > 0);
• parameter independence (𝜋𝑖𝑗𝑘 for different parent configurations)
andmodularity (same for 𝜋𝑖𝑗𝑘 in different Θ𝑋𝑖

∣ Π𝑋𝑖
);

Heckerman et al. derived a closed form expression for P(𝒟 ∣ 𝒢):

BD(𝒢, 𝒟; 𝜶) =
𝑁

∏
𝑖=1

BD(𝑋𝑖, Π𝑋𝑖
; 𝛼𝑖) =

=
𝑁

∏
𝑖=1

𝑞𝑖

∏
𝑗=1

[
Γ(𝛼𝑖𝑗)

Γ(𝛼𝑖𝑗 + 𝑛𝑖𝑗)

𝑟𝑖

∏
𝑘=1

Γ(𝛼𝑖𝑗𝑘 + 𝑛𝑖𝑗𝑘)
Γ(𝛼𝑖𝑗𝑘)

]

where 𝑟𝑖 is the number of states of 𝑋𝑖; 𝑞𝑖 is the number of configurations
of Π𝑋𝑖

; 𝑛𝑖𝑗 = ∑𝑘 𝑛𝑖𝑗𝑘; and 𝛼𝑖𝑗 = ∑𝑘 𝛼𝑖𝑗𝑘.
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DBNs: Bayesian Dirichlet Equivalent Uniform (BDeu)

Themost common BD score assumes 𝛼𝑖𝑗𝑘 = 𝛼/(𝑟𝑖𝑞𝑖), 𝛼𝑖 = 𝜶 and is
known as BDeu (Bayesian Dirichlet equivalent uniform). The uniform
prior over the parameters was justified by the lack of prior knowledge
and widely assumed to be non-informative.

However, there is ample evidence that this is a problematic choice:
• The prior is actually not uninformative.
• MAP DAGs selected using BDeu are highly sensitive to the choice of

𝛼 and can have markedly different number of arcs even for
reasonable 𝛼.

• In the limits 𝛼 → 0 and 𝛼 → ∞ it is possible to obtain both very
simple and very complex DAGs, andmodel comparisonmay be
inconsistent for small 𝒟 and small 𝛼.

• The sparseness of the MAP network is determined by a complex
interaction between 𝛼 and 𝒟.
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Better Than BDeu: Bayesian Dirichlet Sparse (BDs)

If the positivity assumption is violated or the sample size 𝑛 is small, there
may be configurations of some Π𝑋𝑖

that are not observed in 𝒟.

BDeu(𝑋𝑖, Π𝑋𝑖
; 𝛼) =

= ∏
𝑗∶𝑛𝑖𝑗=0

[
���������Γ(𝑟𝑖𝛼∗)
Γ(𝑟𝑖𝛼∗)

𝑟𝑖

∏
𝑘=1

Γ(𝛼∗)
Γ(𝛼∗)

] ∏
𝑗∶𝑛𝑖𝑗>0

[
Γ(𝑟𝑖𝛼∗)

Γ(𝑟𝑖𝛼∗ + 𝑛𝑖𝑗)

𝑟𝑖

∏
𝑘=1

Γ(𝛼∗ + 𝑛𝑖𝑗𝑘)
Γ(𝛼∗)

] .

So the effective imaginary sample size decreases as the number of
unobserved parents configurations increases, and the MAP estimates of
𝜋𝑖𝑗𝑘 gradually converge to the ML and favour overfitting.
To address these two undesirable features of BDeu we replace 𝛼∗ with

̃𝛼 = {
𝛼/(𝑟𝑖 ̃𝑞𝑖) if 𝑛𝑖𝑗 > 0
0 otherwise

, ̃𝑞𝑖 = {number of Π𝑋𝑖
such that 𝑛𝑖𝑗 > 0}

and we plug it in BD instead of 𝛼∗ = 𝛼/(𝑟𝑖𝑞𝑖) to obtain BDs.
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BDeu and BDs Compared

Cells that correspond to (X𝑖, Π𝑋𝑖
) combinations that are not observed

in the data are in red, observed combinations are in green.
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GBNs: The Bayesian Gaussian Equivalent Score

The Bayesian Gaussian equivalent (BGe) score is defined as the P(𝒟 ∣ 𝒢)
associated with a normal-Wishart prior (𝝁, 𝑊) with 𝝁 ∼ 𝑁(𝝂, 𝛼𝜇𝑊)
and 𝑊 ∼ Wishart(𝑇 , 𝛼𝑤):

BGe(𝑋𝑖, Π𝑋𝑖
) =

(
𝛼𝜇

𝑁 + 𝛼𝜇
)

𝑙/2
Γ𝑙((𝑁 + 𝛼𝑤 − 𝑛 + 𝑙)/2)
𝜋𝑙𝑁/2Γ𝑙((𝛼𝑤 − 𝑛 + 𝑙)/2)

|𝑇𝑋𝑖,Π𝑋𝑖
|(𝛼𝑤−𝑛+𝑙)/2

|𝑅𝑋𝑖,Π𝑋𝑖
|(𝑁+𝛼𝑤−𝑛+𝑙)/2

where

Γ𝑙 (
𝑥
2

) = 𝜋𝑙(𝑙−1)/4
𝑙

∏
𝑗=1

Γ (
𝑥 + 1 − 𝑗

2
) ,

𝑅 = 𝑇 + 𝑆𝑁 +
𝑁𝛼𝑤

𝑁 + 𝛼𝑤
(𝝂 − x̄)(𝝂 − x̄)𝑇.

(𝑙 is defined to be |𝑋𝑖 ∪ Π𝑋𝑖
| = |Π𝑋𝑖

| + 1.)
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Penalised Likelihoods: AIC and BIC

Penalised likelihoods make for very popular scores. AIC overfits a lot. BIC
may under-fit a bit but it is a good default to use. For DBNs, the
log-likelihood and the number of parameters associated with a local
distribution are:

LL(𝑋𝑖, Π𝑋𝑖
) =

𝑛
∏
𝑚=1

P(𝑋𝑖 = 𝑥𝑚 ∣ Π𝑋𝑖
= 𝜋𝑚), |Θ𝑋𝑖

| = 𝑅 × |Π𝑋𝑖
|;

for GBNs:

LL(𝑋𝑖, Π𝑋𝑖
) =

𝑛
∏
𝑚=1

𝑁(𝑥𝑚; 𝝁𝑋𝑖
+ 𝜋𝑚𝜷𝑋𝑖

, 𝜎2
𝑋𝑖

), |Θ𝑋𝑖
| = |Π𝑋𝑖

| + 1;

for CLGBNS (Δ𝑋𝑖
are the discrete parents, Γ𝑋𝑖

the continuous parents):

LL(𝑋𝑖, Π𝑋𝑖
) =

𝑛
∏
𝑚=1

𝑁(𝑥𝑚; 𝝁𝑋𝑖,𝛿𝑚
+ 𝛾𝑚𝜷𝑋𝑖,𝛿𝑚

, 𝜎2
𝑋𝑖,𝛿𝑚

),

|Θ𝑋𝑖
| = |Δ𝑋𝑖

| × (|Γ𝑋𝑖
| + 1).
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bnlearn: Hill Climbing with BIC (MARKS)

hc() implements hill-climbing with random restarts, and can use
different scores much like functions implementing constraint-based
algorithms can use different tests.

dag.marks = hc(marks, score = "bic-g")

Note that hill-climbing always returns a DAG, not a CPDAG; so the correct
way of comparing it with another graph is to take the CPDAG for both.

true.dag =
model2network("[ALG][ANL|ALG][MECH|ALG:VECT][STAT|ALG:ANL][VECT|ALG]")

unlist(compare(dag.marks, true.dag))
tp fp fn
3 3 3

unlist(compare(cpdag(dag.marks), cpdag(true.dag)))
tp fp fn
6 0 0
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The Hill-Climbing Algorithm (MARKS)

Initial BIC score: −1807.528

MECH

VECT

ALG

ANL
STAT

Current BIC score: −1778.804

MECH

VECT

ALG

ANL
STAT

Current BIC score: −1755.383

MECH

VECT

ALG

ANL
STAT

Current BIC score: −1737.176

MECH

VECT

ALG

ANL
STAT

Current BIC score: −1723.325

MECH

VECT

ALG

ANL
STAT

Current BIC score: −1720.901

MECH

VECT

ALG

ANL
STAT

Current BIC score: −1720.150

MECH

VECT

ALG

ANL
STAT

Final BIC score: −1720.150

MECH

VECT

ALG

ANL
STAT
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bnlearn: Comparing Networks

• compare() takes two graphs (DAGs, CPDAGs, UGs) and returns a list
containing tp (true positives), fp (false positives) and fn (false
negatives); directed and undirected arcs are considered different.
unlist(compare(dag.marks, true.dag))

tp fp fn
3 3 3

• hamming() computes the Hamming distance between the skeletons
of the graphs (zero means a perfect match).
hamming(dag.marks, true.dag)

[1] 0

• shd() computes the Structural Hamming distance between two
CPDAGs, which is similar to the Hamming distance but with a penalty
of 1/2 for directed-undirected arc differences.
shd(dag.marks, true.dag)

[1] 0
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bnlearn: Hill Climbing with Random Restarts (ASIA)

In addition to scores and their tuning parameters (here iss for the
imaginary sample size of BDeu), hc() has arguments restart for the
number of random restarts and perturb for the number of perturbed
arcs in the new starting DAG.

asia.restart = hc(asia, score = "bde", iss = 1, restart = 10, perturb = 5)

debugging.output =
capture.output(hc(asia, score = "bde", iss = 1, restart = 10,

perturb = 5, debug = TRUE))
head(grep("^\\* (best|restart)", debugging.output, value = TRUE), n = 10)

[1] "* best operation was: adding B -> D ."
[2] "* best operation was: adding L -> E ."
[3] "* best operation was: adding E -> X ."
[4] "* best operation was: adding S -> B ."
[5] "* best operation was: adding T -> E ."
[6] "* best operation was: adding E -> D ."
[7] "* best operation was: adding S -> L ."
[8] "* best operation was: adding L -> E ."
[9] "* best operation was: adding E -> X ."

[10] "* best operation was: adding S -> L ."
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Why Do We Want Random Restarts?

Random restarts reduce the probability of getting stuck in a local
maximum by jumping away from it. The DAG we jump to is created by
perturbing the DAG that was identified as a local maximum, that is, by
changing a number of its arcs to create a new DAG.

head(grep("^\\* (current score|doing)", debugging.output, value = TRUE), 14)
[1] "* current score: -15225 "
[2] "* current score: -14043 "
[3] "* current score: -12955 "
[4] "* current score: -12026 "
[5] "* current score: -11579 "
[6] "* current score: -11348 "
[7] "* current score: -11217 "
[8] "* current score: -11096 "
[9] "* doing a random restart, 9 of 10 left."

[10] "* current score: -12150 "
[11] "* current score: -11220 "
[12] "* current score: -11099 "
[13] "* current score: -11096 "
[14] "* doing a random restart, 8 of 10 left."
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bnlearn: Hill-Climbing With Preseeded Networks

Another way to avoid getting stuck in local maxima is to start the search
from a different network. The default is to start from the empty DAG.

capture.output(hc(asia, score = "bde", iss = 1, debug = TRUE))[c(2, 6:7)]
[1] "* starting from the following network:"
[2] " model:"
[3] " [A][S][T][L][B][E][X][D] "

However, we can specify an alternative starting DAG with the start
argument. Here we generate one at randomwith random.graph() .

capture.output(hc(asia, score = "bde", iss = 1,
start = random.graph(names(asia)), debug = TRUE))[c(2, 6:7)]
[1] "* starting from the following network:"
[2] " model:"
[3] " [A][S][T][L|A:S:T][E|A:S][B|S:T:L][X|S:E][D|A:L] "

The principle is the same as, say, starting 𝑘-means from different sets of
centroids and keeping the clustering that fits the data best.
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bnlearn: TABU Search

In addition to hc() , bnlearn implements tabu() with arguments tabu
(the length of the tabu list) and max.tabu (the maximum number of
iterations tabu() can perform without improving the best network
score).

debugging.output =
capture.output(tabu(asia, score = "bde", iss = 1, tabu = 10,

max.tabu = 5, debug = TRUE))
head(grep("^\\* (best operation|network)", debugging.output, value = TRUE), 10)

[1] "* best operation was: adding B -> D ."
[2] "* best operation was: adding L -> E ."
[3] "* best operation was: adding E -> X ."
[4] "* best operation was: adding S -> B ."
[5] "* best operation was: adding T -> E ."
[6] "* best operation was: adding E -> D ."
[7] "* best operation was: adding S -> L ."
[8] "* network score did not increase (for 1 times), looking for a minimal decrease :"
[9] "* best operation was: reversing S -> L ."

[10] "* network score did not increase (for 2 times), looking for a minimal decrease :"
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Pros and Cons of Score-based Algorithms

• Convergence to the global maximum (the best structure) is not
guaranteed for finite samples, the search may get stuck in a local
maximum.

• They are more stable than constraint-based algorithms.

• They require a definition of both the global and the local
distributions, and amatching decomposable, network score. This
means, for instance, that we cannot use themwith ordinal variables
because it is difficult to specify the global distribution. On the other
hand, there are trend tests to use for conditional independence.

• Most scores have tuning parameters, whereas conditional
independence tests (mostly) do not; and algorithms have tuning
parameters as well. This usually means a grid of values to be tested
under cross-validation to select the optimal learning strategy.
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Hybrid Structure Learning Algorithms

Hybrid algorithms combine constraint-based and score-based
algorithms to complement the respective strengths and weaknesses;
they are considered the state of the art in current literature.

They work by alternating the following two steps:
• learn some conditional independence constraints to restrict the
number of candidate networks;

• find the network that maximises some score function and that
satisfies those constraints and define a new set of constraints to
improve on.

These steps can be repeated several times (until convergence), but one
or two times is usually enough.
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The Sparse Candidate Algorithm and MMHC

1. Choose a network structure 𝒢, usually (but not necessarily) empty.

2. Repeat the following steps until convergence:
2.1 restrict: select a set C𝑖 of candidate parents for each node 𝑋𝑖 ∈ X,

which must include the parents of 𝑋𝑖 in 𝒢;
2.2 maximise: find the network structure 𝒢∗ that maximises Score(𝒢∗)

among the networks in which the parents of each node 𝑋𝑖 are
included in the corresponding set C𝑖;

2.3 set 𝒢 = 𝒢∗.

3. Return the directed acyclic graph 𝒢.

If we iterate only once, using MMPC for the restrict phase and
hill-climbing for the maximise phase we obtain the Max-Min
Hill-Climbing (MMHC) algorithm as a particular case.
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bnlearn: rsmax2()

rsmax2() implements a single step of the Sparse Candidate algorithm: it
runs the restrict andmaximise phases only once.

asia.rsmax2 =
rsmax2(asia, restrict = "si.hiton.pc", maximize = "tabu",

restrict.args = list(test = "x2", alpha = 0.01),
maximize.args = list(score = "bic", tabu = 10))

Its main arguments are:
• restrict : constraint-based algorithm to use in the restrict phase;
• restrict.args : its optional arguments;
• maximize : score-based algorithm to use in the maximise phase;
• maximize.args : its optional arguments.
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bnlearn: mmhc()

The following two commands are equivalent:

rsmax2(asia, restrict = "mmpc", maximize = "hc")
mmhc(asia)

And from the debugging output we can see that is the case:

debugging.output = capture.output(print(mmhc(asia, debug = TRUE)))
grep("restrict|maximize|method:", debugging.output, value = TRUE)

[1] "* restrict phase, using the Max-Min Parent Children algorithm."
[2] "* maximize phase, using the Hill-Climbing algorithm."
[3] " constraint-based method: "
[4] " score-based method: Hill-Climbing "

debugging.output =
capture.output(print(rsmax2(asia, restrict = "mmpc", maximize = "hc",

debug = TRUE)))
grep("restrict|maximize|method:", debugging.output, value = TRUE)

[1] "* restrict phase, using the Max-Min Parent Children algorithm."
[2] "* maximize phase, using the Hill-Climbing algorithm."
[3] " constraint-based method: "
[4] " score-based method: Hill-Climbing "
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Pros and Cons of Hybrid Algorithms

• You canmix andmatch conditional independence tests and network
scores with structure learning algorithms, since the latter do not
depend on the nature of the data. They can range from frequentist to
Bayesian to information-theoretic and anything in between (within
reason).

• Constraint-based algorithms are usually faster, score-based
algorithms are more stable. Hybrid algorithms are at least as good as
score-based algorithms, and often a bit faster.

• Tuning parameters can be difficult to tune for some configurations of
algorithms, tests and scores.
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A Final Comparison

In this particular case, hill-climbing with random restarts wins the day.

true.dag = model2network("[A][S][T|A][L|S][B|S][D|B:E][E|T:L][X|E]")
unlist(compare(cpdag(asia.rsmax2), cpdag(true.dag)))

tp fp fn
4 4 1

shd(asia.rsmax2, true.dag)
[1] 4

unlist(compare(cpdag(asia.restart), cpdag(true.dag)))
tp fp fn
7 1 0

shd(asia.restart, true.dag)
[1] 1

unlist(compare(cpdag(cpdag2), cpdag(true.dag)))
tp fp fn
4 4 1

shd(cpdag2, true.dag)
[1] 4
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Graphical Priors

Themost common choice for P(𝒢) is the uniform distribution because it
is feels like it is uninformative. However, it is problematic because:
• Score-based structure learning algorithms typically generate new
candidate DAGs by a single arc additions, deletions or reversals:

P(𝒢 ∪ {𝑋𝑗 → 𝑋𝑖} ∣ 𝒟)
P(𝒢 ∣ 𝒟)

=
���������P(𝒢 ∪ {𝑋𝑗 → 𝑋𝑖})

P(𝒢)
P(𝒟 ∣ 𝒢 ∪ {𝑋𝑗 → 𝑋𝑖})

P(𝒟 ∣ 𝒢)
.

The prior always simplifies, and that implies all operations have a
prior probability of 1/3. The probability that two nodes up
connected is then 2/3.

• Two arcs are correlated in the prior if they are incident on a common
node, so false positives and false negatives can potentially
propagate through P(𝒢) and lead to further errors in learning 𝒢.

• DAGs that are completely unsupported by the data have most of the
probability mass for large enough 𝑁.
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Sparse Graphical Priors

Wewant our BNs to be sparse: we should express this fact in P(𝒢). The
simplest option is to use a marginal uniform prior that:
• Does not favour arc inclusion, which should have probability ⩽ 1/2.

• Does not favour the propagation of errors in structure learning
because arcs are independent from each other.

• Is computationally trivial to use: including an arc with probability
⩽ 1/4, its reverse with the same probability, and not including an arc
with probability ⩾ 1/2.

A DAG can contain 𝑁(𝑁−1)
2

arcs. We can set the probability of inclusion to

𝑐 2
𝑁−1

, 𝑐 ∈ [1, 3] to have 𝑂(𝑐𝑁) expected arcs in the prior, which often

works even better.
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BDe and BDs Scores, Uniform and Marginal Uniform Priors

20

40

60

80

100

120

0.1 0.2 0.5 1 2 5

BIC
U + BDeu, α = 1
U + BDs, α = 1
MU + BDeu, α = 1
MU + BDs, α = 1
U + BDeu, α = 10
U + BDs, α = 10
MU + BDeu, α = 10
MU + BDs, α = 10

48



Informative Graphical Priors

When we have reliable information elicited from experts, wemay also
want to use an informative prior to force structure learning to include (or
not) specific arcs patterns. Some examples:
• limiting the number of parents for some or all nodes;
• setting different probabilities for inclusion for different arcs (the
Castelo & Siebes prior);

• whitelisting or blacklisting specific arcs;
• setting the topological ordering of the topological ordering,
effectively allowing only one direction for each arc.

All these informative priors concentrate the prior probability mass on
DAGs we know from experts to be the most sensible. They can also rule
out a large portion of the possible DAGs (giving them a zero probability),
reducing the search space by orders of magnitude.
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bnlearn: Graphical Priors with Hill-Climbing

hc(marks, maxp = 3)

wl = data.frame(
from = c("ANL", "ANL"),
to = c("ALG", "MECH")

)
bl = data.frame(
from = c("MECH", "MECH"),
to = c("ALG", "VECT")

)
hc(marks, whitelist = wl, blacklist = wl)

hc(marks, score = "bge", prior = "marginal", beta = 2 / (ncol(marks) - 1))
beta = data.frame(from = c("MECH", "ALG"), to = c("ALG", "MECH"),

prob = c(0.2, 0.6))
hc(marks, score = "bge", prior = "cs", beta = beta)

bl = tiers2blacklist(list(c("ANL", "ALG"), c("VECT", "STAT"), "MECH"))
hc(marks, blacklist = bl)
bl = ordering2blacklist(c("ANL", "ALG", "VECT", "STAT", "MECH"))
hc(marks, blacklist = bl)
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Model Averaging: We Should Always Do That!

Structure learning from limited amounts of data is inherently noisy.
Perturbing the data, learning multiple DAGs and then averaging them is
most effective in removing that noise. There are twomain ways of doing
that:
1. Searching from different starting points increases our coverage of

the space of the possible DAGs and uses all observations.

2. Learning multiple DAGs from bootstrap samples (that is, bagging)
perturbs the data reducing the impact of outliers.

3. Both.

The frequency with which an arc appears is a measure of the strength of
the dependence. In other words, it quantifies our confidence that the arc
is real. This is separate from themagnitude or the sign of the statistical
effect the arcs represents.
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Multiple Starting Points and the Same Data
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Same Starting Point and Bootstrapped Data
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bnlearn: Model Averaging (I)

nodes = names(marks)
start = random.graph(nodes = nodes, method = "ic-dag", num = 500, every = 50)
netlist = lapply(start,
function(dag) hc(marks, start = dag)

)
str = custom.strength(netlist, nodes = nodes)
head(str)

from to strength direction
1 MECH VECT 1.000 0.5
2 MECH ALG 1.000 0.5
3 MECH ANL 0.086 0.5
4 MECH STAT 0.066 0.5
5 VECT MECH 1.000 0.5
6 VECT ALG 1.000 0.5

str = boot.strength(marks, algorithm = "hc")
head(str)

from to strength direction
1 MECH VECT 0.830 0.521
2 MECH ALG 0.825 0.509
3 MECH ANL 0.095 0.737
4 MECH STAT 0.030 0.583
5 VECT MECH 0.830 0.479
6 VECT ALG 0.940 0.500
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bnlearn: Model Averaging (II)

We need a threshold to decide
which arcs are strong enough to
be included in the consensus
DAG that is the output of model
averaging: we can either
estimate it from the data

averaged.network(str)

or pick one ourselves.

averaged.network(str, threshold = 0.90)
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Who Learns the Best Network Structures

Bayesian network Structure learning is defined by the combination of a
statistical criterion and an algorithm that determines how the criterion is
applied to the data. What we can say about the algorithms?

Q1 Which of constraint-based and score-based algorithms provide the
most accurate structural reconstruction?

Q2 Are hybrid algorithms more accurate than constraint-based or
score-based algorithms?

Q3 Are score-based algorithms slower than constraint-based and hybrid
algorithms?

Q4 Are hybrid algorithms faster than constraint-based or score-based
algorithms?

Q5 Do the different classes of algorithms present any systematic
difference in either speed or accuracy when learning small networks
and large networks?
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Discrete Bayesian Networks (Large Samples)
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Discrete Bayesian Networks (Small Samples)
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Gaussian Bayesian Networks

log10(calls to the statistical criterion)
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Constraint-based algorithms are in blue shades, hybrid algorithms in
green shades, score-based in warm colours. Tabu search is red, the PC
algorithm is navy blue.
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Conclusions

We can say that, broadly speaking:
Q1 Constraint-based algorithms are more accurate than score-based

algorithms for small sample sizes.

Q2 They are as accurate as hybrid algorithms.

Q3 Tabu search, as a score-based algorithm, is faster than
constraint-based algorithmsmore often than not.

Q4 Hybrid algorithms are not faster overall than constraint-based or
score-based algorithms. In fact, there is no consistent ordering of
the algorithms from these classes.

Q5 No systematic difference in the ranking of different classes of
algorithms in terms of speed and accuracy was observed for any
class of algorithms for small networks compared to large networks.

This in contrast with the general view in the older literature that only
studied trivially small problems.
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Relevant Functions in bnlearn

• structure learning algorithms: pc.stable() , hc() , tabu() , rsmax2() ,
etc.

• graphical distances: shd() , hamming() and compare() .

• graphical comparisons: graphviz.compare()

• model averaging: boot.strength() , custom.strength() and
averaged.network() .
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Summary

• Learning the structure of a BN is the first andmost crucial step in
learning a BN, whether from data or from expert knowledge.

• There are three classes of algorithms to learn the structure of a BN
from data: constraint-based, score-based and hybrid.

• The algorithms in these three classes are defined without requiring
any specific type of data, which means that it is possible to mix and
match tests and scores with algorithms.

• Different classes of algorithms have different strengths and
weaknesses. Score-based algorithms are in more common use in
practice.

• Scores, tests and algorithms all have tuning parameters and it is
usually not clear how their choice impacts the learned networks and
howmuch.

• There is no “best” algorithm: different algorithms will be “best” with
different data sets and for different tasks.
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Thanks!

Any questions?
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Bayesian Networks are not Necessarily Causal

In the previous lectures, we have defined BNs in terms of conditional
independence relationships and probabilistic properties, without any
implication that arcs should represent cause-and-effect relationships.

The existence of equivalence classes of BNs that are indistinguishable
from a probabilistic point of view provides an immediate proof that arc
directions are not indicative of causal effects. The fact that are
prognostic and diagnostic formulations of the same BN are identical in
terms of inference is another strong hint.

Therefore, while it is appealing to interpret the direction of arcs in causal
terms, please do not do it lightly, especially when they have been
learned from observational data.
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The Train Use Survey as a Prognostic BN
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That is a prognostic view of the survey as a BN:
1. the blocks in the experimental design on top

(say, stuff from the registry office);
2. the variables of interest in the middle (say,

socio-economic indicators);
3. the object of the survey at the bottom (say,

means of transport).

Variables that can be thought as “causes” are
above variables that can be considered their
“effect”, and confounders are above everything
else.
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The Train Use Survey as a Diagnostic BN
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That is a diagnostic view of the survey as a BN: it
encodes the same dependence relationships as
the prognostic view but is laid out to have
“effects” on top and “causes” at the bottom.

Depending on the phenomenon and the goals of
the survey, one may have a graph that makes
more sense than the other; but they are
equivalent for any subsequent inference.
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Probabilistic and Causal Bayesian Networks

However, from an intuitive point of view it can be argued that a “good”
BN should represent the causal structure of the data it is describing.
Such BN are usually fairly sparse and their interpretation is at the same
time clear andmeaningful, as explained by Judea Pearl in his book on
causality:

It seems that if conditional independence judgments are byprod-
ucts of stored causal relationships, then tappingand representing
those relationships directlywould be amore natural andmore re-
liablewayof expressingwhatweknoworbelieveabout theworld.
This is indeed the philosophy behind causal BNs.

This is the reason why building a BN from expert knowledge in practice
codifies known and expected causal relationships for a given
phenomenon.
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What Additional Assumptions Do We Need For Causality?

We need three additional assumptions:

• Each variable 𝑋𝑖 is conditionally independent of its non-effects,
both direct and indirect, given its direct causes (the causal Markov
assumption, much like the original but causal);

• There must exist a DAG that is faithful to P(X): the only
dependencies in P(X) are those arising from d-separation.

• There must be no latent variables (unobserved variables influencing
the variables in the network) acting as confounding factors. Such
variables may induce spurious correlations between the observed
variables, thus introducing bias in the causal network.
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What Additional Assumptions Do We Need For Causality?

The third assumption descends from the first two:
• the presence of unobserved variables violates the faithfulness
assumption, because the network structure does not include them;

• and possibly the causal Markov property, because an arc may be
wrongly added between two observed variables due to the
influence of the latent one.

These assumptions are difficult to verify in real-world settings because
the set of the potential confounding factors is not usually known. At best,
we can address this issue, along with selection bias, by implementing a
carefully planned experimental design in which we use blocking to
screen out confounding.
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Causality and Equivalence Classes

Even when dealing with interventional data collected from a scientific
experiment (where we can control at least some variables and observe
the resulting changes), there are usually multiple equivalent BNs that
represent reasonable causal models. Many arcs may not have a definite
direction, resulting in substantially different DAG. When the sample size
is small there may also be several non-equivalent BN fitting the data
equally well.

Therefore, in general we are not able to identify a single, “best”, causal
BN but rather a small set of likely causal BN that fit our knowledge of the
data.
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The MARKS Example, Revisited

An example of the bias introduced by the presence of a latent variable
was illustrated by Edwards (“Introduction to Graphical Modelling”) using
the marks data. This data set was originally investigated by Mardia
(“Multivariate Analysis”) and subsequently in Whittaker (“Graphical
Models in Applied Multivariate Statistics”).
marks contains the exam scores between 0 and 100 for 88 students
across 5 different topics, namely: mechanics (MECH), vectors (VECT),
algebra (ALG), analysis (ANL) and statistics (STAT).

library(bnlearn)
head(marks)

MECH VECT ALG ANL STAT
1 77 82 67 67 81
2 63 78 80 70 81
3 75 73 71 66 81
4 55 72 63 70 68
5 63 63 65 70 63
6 53 61 72 64 73
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Add Latent Grouping...

Edwards noted that the students apparently belonged to two groups
(which we will call "A" and "B") with substantially different academic
profiles. He then assigned each student to one of those two groups using
the EM algorithm to impute groupmembership as a latent variable (say,
LAT). The EM algorithm assigned the first 52 students (with the exception
of number 45) to group "A" , and the rest to group "B" .

latent = factor(c(rep("A", 44), "B", rep("A", 7), rep("B", 36)))
modelstring(hc(marks[latent == "A", ]))

[1] "[MECH][ALG|MECH][VECT|ALG][ANL|ALG][STAT|ALG:ANL]"
modelstring(hc(marks[latent == "B", ]))

[1] "[MECH][ALG][ANL][STAT][VECT|MECH]"
modelstring(hc(marks))

[1] "[MECH][VECT|MECH][ALG|MECH:VECT][ANL|ALG][STAT|ALG:ANL]"
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... And the Models Look Nothing Alike

Group A

MECH

VECT

ALG

ANL
STAT

Group B

MECH

VECT

ALG

ANL
STAT

BN without Latent Grouping

MECH

VECT

ALG

ANL
STAT

BN with Latent Grouping

MECH

VECT

ALG

ANL

STAT

LAT

The BNs learned from
group "A" and group
"B" are completely
different.

Furthermore, they are
both different from
the BN learned from
the whole data set.

And finally, learning
the BN including LAT
gives a completely
different DAG again.
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Distributional Assumptions also Matter

We can choose to discretise the marks data and include LAT when
learning the structure of the discrete BN. Again, we obtain a BN whose
DAG is completely different from the rest.

dmarks = discretize(marks, breaks = 2, method = "interval")
modelstring(hc(data.frame(dmarks, LAT = latent)))

[1] "[MECH][ANL][LAT|MECH:ANL][VECT|LAT][ALG|LAT][STAT|LAT]"

This BN seems to provide a simple interpretation of the relationships
between the topics: the grades in mechanics and analysis can be used to
infer which group a student belongs to, and that in turn influences the
grades in the remaining topics.

However, if we choose not to discretise:

modelstring(hc(data.frame(marks, LAT = latent)))
[1] "[LAT][ANL|LAT][ALG|ANL:LAT][VECT|ALG][STAT|ALG:ANL][MECH|VECT:ALG]"
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With Discretisation, Without Discretisation

par(mfrow = c(1, 2))
graph.par(list(nodes = list(fontsize = 11)))
graphviz.plot(hc(cbind(dmarks, LAT = latent)))
graphviz.plot(hc(cbind(marks, LAT = latent)))

MECH

VECT ALG

ANL

STAT

LAT

MECH

VECT

ALG

ANL

STAT

LAT

We can clearly see that any causal relationship we would have inferred
from a DAG learned without taking LAT into account would be potentially
spurious. Even after including LAT the situation is not necessarily clear.
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Where Things Go Wrong (I)

Suppose that we have a simple GBN of the form B ← A → C :

complete.bn = custom.fit(model2network("[A][B|A][C|A]"),
list(A = list(coef = c("(Intercept)" = 0), sd = 1),

B = list(coef = c("(Intercept)" = 0, A = 3), sd = 0.5),
C = list(coef = c("(Intercept)" = 0, A = 2), sd = 0.5))

)

In this model we have that B is not adjacent to C but B �⟂⟂ 𝐺C since they
are both children of A :

dsep(complete.bn, "B", "C")
[1] FALSE

However, B and C are d-separated by A , and this implies B ⟂⟂𝑃 C ∣ A .

dsep(complete.bn, "B", "C", "A")
[1] TRUE
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Where Things Go Wrong (II)

If we generate 100 observations from the complete data we can learn the
correct DAG from the data.

complete.data = rbn(complete.bn, 100)
modelstring(hc(complete.data))

[1] "[A][B|A][C|A]"

Now, assume we do not observe A ; that is, A is a latent variable. As a
result, B and C are adjacent in the DAGwe learn from the incomplete data.

modelstring(hc(complete.data[, c("B", "C")]))
[1] "[B][C|B]"

If we do not include A in the model, there is no way to d-separate B and C!
As a result they end up being linked in this second DAG, as that is the
closest we can get to the set of conditional independencies expressed by
the true DAG.
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Sometimes Things Do Not Go Wrong (I)

However, consider now a GBN of the form A → B → C :

complete.bn = custom.fit(model2network("[A][B|A][C|B]"),
list(A = list(coef = c("(Intercept)" = 0), sd = 1),

B = list(coef = c("(Intercept)" = 0, A = 3), sd = 0.5),
C = list(coef = c("(Intercept)" = 0, B = 2), sd = 0.5))

)

Now, B depends on A and C depends on B , so by transitivity A �⟂⟂ 𝐺C
unless we use B to d-separate them.

dsep(complete.bn, "B", "A")
[1] FALSE

dsep(complete.bn, "C", "A")
[1] FALSE

dsep(complete.bn, "C", "A", "B")
[1] TRUE
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Sometimes Things Do Not Go Wrong (II)

Again, if we generate 100 observations from the complete data we can
learn the correct DAG from the data.

complete.data = rbn(complete.bn, 100)
modelstring(hc(complete.data))

[1] "[A][B|A][C|B]"

The DAG we learn from the incomplete data (omitting B) is still consistent
with the true DAG as there is still a path leading from A to C .

modelstring(hc(complete.data[, c("A", "C")]))
[1] "[A][C|A]"

The fact that we do not observe the intermediate node B in the causal
chain of nodes means that it is now impossible to d-separate A and C and
that A appear to be a direct cause of C . The DAG simple glosses over the
unobserved B .
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Sometimes Things Do Not Go Wrong (III)

Another situation in which latent variables can have a smaller impact
when learning the DAG from the data is for v-structures.

complete.bn = custom.fit(model2network("[A][B][C|B:A]"),
list(A = list(coef = c("(Intercept)" = 0), sd = 1),

B = list(coef = c("(Intercept)" = 0), sd = 0.5),
C = list(coef = c("(Intercept)" = 0, A = 3, B = 2), sd = 0.5))

)
complete.data = rbn(complete.bn, 100)
modelstring(hc(complete.data[, c("A", "C")]))

[1] "[A][C|A]"
modelstring(hc(complete.data[, c("A", "B")]))

[1] "[A][B]"

In this case:
• if one of the parents is a latent variable, we still learn the arc from
the other parent correctly;

• if the common child is the latent variable, the parents are not linked
by a (spurious) arc.
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In Conclusion

• The robustness of causal networks rests on the assumption that there
are no latent variables.

• Learning a DAG from data in the presence of latent variables is likely to
result in a DAG that is causally wrong, especially when the DAG
includes more than 2-3 nodes or encodes a large set of
(in)dependence statements.

• Some patterns of latent variables are more problematic than others: a
latent variable that is a common cause for two or more observed
nodes represents a confounders and as such always leads to wrong
causal networks. Other patterns may be less problematic.

• Latent variables and wrong parametric assumptions interact in
determining howwrong the learned DAG is, and it is impossible in
practice to determine which is causing a missing/spurious arc.
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Causal Inference

Once we have a causal BN we are happy with, we can again focus on
using it to answer relevant questions. In the context of causal networks,
we call this causal inference. Compared to the posterior inference we
have seen in the previous lecture:
• in probabilistic inference we compute posterior probabilities for
events of interest for the observed network;

• in causal inference we compute the effects of interventions for
events of interest on amodified network that reflects the
interventions.

So in probabilistic inference we are working in an observational setting
(look but do not touch), in causal inference we are working in an
experimental setting (tweak and see what happens). As a result, causal
and probabilistic inference answer different questions; and they will give
different probabilities for the same event given the same evidence in
general.
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The Train Use Survey Revisited

Say that in the original train survey example we collect the data by
handing out forms to people chosen at random from the general
population: this gives us an observational data set which we can use to
learn the BN (from the next lecture).
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E

O R

S

T

Say that we are interested in the
effect that the residence (R) has on
occupation (O), in particular how
occupation changes for people
living in big cities. The conditional
distribution that describes this is:

P(O ∣ R = "big").
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The Train Use Survey Revisited (Posterior)

We can compute the posterior distribution of O given R = "big" .

prop.table(table(cpdist(survey.bn, "O", evidence = (R == "big"))))
O

emp self
0.9548 0.0452

This gives us the conditional distribution of the occupation in the part of
the general population that lives in a big city. If we compare this with the
marginal distribution of O

prop.table(table(cpdist(survey.bn, "O", evidence = TRUE)))
O

emp self
0.9478 0.0522

we see a ≈ 0.07% increase in employees, so the difference from the
overall general population is not very big from a practical perspective.
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The Train Use Survey Revisited (Causal, I)

Now, we can wonder: if we allow everybody to live in a big city by
starting a public housing program, howwill that affect the occupation
status? In other words, we will perform an intervention to alter the
characteristics of the population from

coef(survey.bn$R)
E

R high uni
small 0.25 0.20
big 0.75 0.80

to

mut.bn = mutilated(survey.bn, evidence = list(R = "big"))
coef(mut.bn$R)

small big
0 1

because we give everybody a house regardless of their education E .
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The Train Use Survey Revisited (Causal, II)
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We can compute the effect of this policy on
occupation using the mutilated network that
incorporates the intervention.

prop.table(table(cpdist(mut.bn, "O",
evidence = TRUE)))
O

emp self
0.9508 0.0492

The difference from before the intervention is
minimal: this suggests that providing public
housing is not an effective policy if the goal is
to alter the composition of the workforce.

This the do-calculus: it rests on the idea that we take complete control of
the nodes that are subject to intervention and therefore we remove all
their parents from the DAG.

23



The Train Use Survey Revisited (Causal, III)

It is important to note that interventions need not to be hard
interventions (e.g. like hard evidence) but can also be soft interventions
(e.g. like soft evidence). For instance, we can consider an alternative
housing policy that makes the population spread out to small cities with
probability 0.5.

mut.bn$R = array(c(0.50, 0.50), dim = 2,
dimnames = list(R = c("small", "big")))

prop.table(table(cpdist(mut.bn, "O",
evidence = TRUE)))
O

emp self
0.9486 0.0514

Again, not much effect on O . Which should not be a surprise since O is
d-separated from R in the mutilated network.

dsep(mut.bn, "O", "R")
[1] TRUE
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Causal Inference and Experimental Design

There are three key benefit in this approach to causal inference:
• We can simulate the effect of interventions without the need to
carry out a real-world experiment, which can be expensive and/or
impossible.

• We can use d-separation to identify which variables produce a
change in a target variable if we intervene on them.

• We can re-purpose posterior inference to quantify the effects of
(possibly complex) causal interventions.

In situation in which designed experiments are possible, causal inference
provides amore intuitive representations of classic experimental design:
• We take control of experimental and blocking factors, which then
have no parents in the DAG.

• Randomisation is equivalent to a soft causal intervention.
• Since randomised variables have no parents, causality necessarily
flows from them to the target variables
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Randomised Trials and Causal Inference in BNs

Consider: a sufficient condition for randomised controlled trials to
protect against confounding is strong ignorability: 𝐸 ⟂⟂𝑃 𝑇 ∣ 𝑉 where 𝐸 is
the treatment effects, 𝑇 is the treatment and 𝑉 are the pre-treatment
evidence on the patients.

Pearl’s backdoor principle (what we just did) implies ignorability.

Consider: the S-ignorability assumption roughly says that if we can find a
set 𝑍 of pre-treatment covariates such that cross-population differences
disappear in every stratum 𝑍 = 𝑧, then the problem can perform
potential outcomes analyses by averaging over those strata.

Pearl’s backdoor principle can express S-admissibility which is
equivalent to S-ignorability if 𝑍 are pre-treatment variables.
Furthermore, S-ignorability can be verified using counterfactuals...
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More Causal Inference: Counterfactuals

A counterfactual is an “if” statement in which the “if” portion is untrue or
unrealised. The “if” portion of a counterfactual is called the hypothetical
condition, or more often, the antecedent. We use counterfactuals to
emphasise our wish to compare two outcomes under the exact same
conditions, differing only in one aspect: the antecedent.
We can express both outcomes simultaneously using a twin network:

U(X)

U(Y)

U(Z)X

Y

Z

U(X)

U(Y)

U(Z)X X'

Y Y'

Z Z'
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Twin Networks and Counterfactuals

If we wish to compute the counterfactual probability P(Y𝑥 = 𝑦 ∣ Z = 𝑧),
meaning ”what if X = 𝑥”, we should:
1. Augment the BN into the twin network by adding the counterfactual

node X′, without any parents.

2. Add counterfactual nodes Y′ and Z′ for the other variables in the
query, with the same parents as Y and Z , respectively.

3. Compute the query P(Y′ = 𝑦 ∣ Z = 𝑧) in the augmented BN.

Automating this construction to general BNs is not trivial: it is usually
donemanually on BNs with a known DAG. However, using BNs for
counterfactuals has the great advantage of allowing us to use
d-separation, inference, etc. which are all automated.
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Counterfactual Fairness

Counterfactual Fairness: a sensitive attribute 𝐴 a should not be a cause
of a target variable in any (statistical) individual. In other words,
changing 𝐴 while holding things which are not causally dependent on 𝐴
constant will not change the distribution of 𝑌.

Formally: a predictor ̂𝑌 of 𝑌 is counterfactually fair given the sensitive
attribute 𝐴 = 𝑎 and any observed variables X if

P( ̂𝑌𝐴 ← 𝑎 = 𝑦 ∣ X = x, 𝐴 = 𝑎) = P( ̂𝑌𝐴 ← 𝑎′ = 𝑦 ∣ X = x, 𝐴 = 𝑎)

for all 𝑦 and 𝑎′ ≠ 𝑎.

In graphical terms: ̂𝑌 is counterfactually fair if it is a function of the
non-descendants of 𝐴 in causal network.
This condition is too strong for most practical applications because it
requires that the distributions are exactly the same for all values of 𝐴.
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Approximate Counterfactual Fairness

Relaxing the definition of counterfactual fairness by introducing some
tolerance in the comparison of the distributions of ̂𝑌 under different
values of 𝐴 gives:

Approximate Counterfactual Fairness: a predictor 𝑓(X, 𝐴) satisfies
(𝜀, 𝛿)-approximate counterfactual fairness if, given the sensitive attribute
𝐴 = 𝑎 and any instantiation X = x, we have that:

P (|𝑓(X𝐴 ← 𝑎, 𝑎) − 𝑓(X𝐴 ← 𝑎′, 𝑎′)| ⩽ 𝜀 ∣ X = x, 𝐴 = 𝑎) > 1 − 𝛿

for all 𝑎′ ≠ 𝑎.

In other words, we allow some degree of unfairness but we assume that
the predictor 𝑓(X, 𝐴) is mostly fair most of the time. This is common in
all fairness literature, regardless of the statistical model.
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Consider: an Example

original model

A U

X

Y

with predictions

A U

X

Y Yh
split fair and unfair

A U

X(A,U) X(U)

Y Yh

fair prediction

U

X(U)

Yh
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Missing Data

Latent variables are just on kind of missing data:
• A latent variable is a variable which we know nothing about, either
its position in the BN or its distribution.

• An unobserved variable is a variable we do not observe, but which
we know the position and the distribution of.

• A partially observed variable is a variable for which we observe
some but not all the samples (the rest are denoted as NA).

The main problems that arise with missing data are:
• How do we learn the structure of BN from the data?
• Given a DAG, how do we estimate the parameters of the local
distributions?

The answers to both questions is the Expectation-Maximisation (EM) and
algorithm. (Data Augmentation is an option as well, but we will not cover
it in this course).
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Classes of Missing Data

There are three classes of missing data:
• Missing completely at random (MCAR): there is no relationship
between the missingness of the data and any values, observed or
missing. Those missing data points are a random subset of the data.

• Missing at Random (MAR): there is a systematic relationship
between the propensity of missing values and the observed data,
but not the missing data.

• Missing Not at Random (MNAR): there is a relationship between the
propensity of a value to bemissing and its values.

MNAR is non-ignorable because the missing data mechanism itself has to
be modelled (why the data are missing and what the likely values are).
MCAR and MAR are both considered ignorable because we don’t have to
include any information about the missing data itself when we deal with
the missing data.
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Representing the Missingness Mechanism

In the context of BNs, each variable has a local distribution
𝑋𝑖 ∼ P(𝑋𝑖 ∣ Π𝑋𝑖

) if the data are complete. If 𝑋𝑖 has missing data, in the
MCAR case

𝑋𝑖 ∼ {
P(𝑋𝑖 ∣ Π𝑋𝑖

) for observed data 𝑋(𝑂)
𝑖

P(𝑋𝑖 ∣ Π𝑋𝑖
) for missing data 𝑋(𝑀)

𝑖 .

The same happens in the MAR case, since the missingness depends on
Π𝑋𝑖

. On the other hand, in the MNAR case

𝑋𝑖 ∼ {
P(𝑋(𝑂)

𝑖 ∣ Π𝑋𝑖
, 𝑀) for observed data 𝑋(𝑂)

𝑖

P(𝑋(𝑀)
𝑖 ∣ Π𝑋𝑖

, 𝑀) for missing data 𝑋(𝑀)
𝑖

where 𝑀 is the missingness mechanism. 𝑀 is non-ignorable because we
cannot estimate the local distribution of 𝑋𝑖 properly without knowing
the missing values in the first place.
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Examples with the Train Use Survey (I)

Since the survey data are collected through a questionnaire, there will be
a positive non-response rate for various questions and for the whole
questionnaire.

• A MCAR situation may arise when questionnaires are lost in the post
– the missingness does not depend on the characteristics of the
individual.

• A MAR situation may arise if women refuse to answer some
questions in the questionnaire in rates significant higher thanmen –
that is fine since S is observed.

• A MNAR situation may arise if all people in a specific big city do not
answer or people of certain social groups do not answer all or part
of the questionnaire – we need to introduce 𝑀 to identify the
non-responders.
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Examples with the Train Use Survey (II)

Missing at Random (MAR)

A

E

O R

S

T

M

M

Missing Not at Random (MNAR)

A

E M

O R

S

T
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The MARKS Example, Revisited

MECH

VECT

ALG

ANL

STAT

LAT M

The latent variable in the
MARKS example is MCAR,
since all the data are
missing the missingness
mechanism is simply
P(M ∣ LAT) = 1.

Which shows that MCAR
missingness is not
necessarily any less
problematic than MAR or
MNAR, especially for causal
inference!
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The Expectation-Maximisation (EM) Algorithm

For a generic statistical quantity 𝜃:

1. Choose an initial value ̂𝜃0 for 𝜃.
2. While | ̂𝜃𝑗−1 − ̂𝜃𝑗| < 𝜀, increasing 𝑗:

2.1 ̂𝜃𝑗 = ̂𝜃𝑗−1
2.2 Expectation step: compute the probability distribution over the

missing values,

P(𝑋(𝑀)
𝑖 ∣ 𝑋(𝑂)

𝑖 , ̂𝜃𝑗) =
P(𝑋(𝑂)

𝑖 ∣ 𝑋(𝑀)
𝑖 , ̂𝜃𝑗) P(𝑋(𝑀)

𝑖 ∣ ̂𝜃𝑗)

∫
𝑋(𝑀)

𝑖
P(𝑋(𝑂)

𝑖 ∣ 𝑋(𝑀)
𝑖 , ̂𝜃𝑗) P(𝑋(𝑀)

𝑖 ∣ ̂𝜃𝑗)

2.3 Maximisation step: Compute the new estimate ̂𝜃𝑗 given
P(𝑋(𝑀)

𝑖 ∣ 𝑋(𝑂)
𝑖 , ̂𝜃𝑗).

3. Estimate 𝜃 with the last ̂𝜃𝑗.
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Properties of the EM Algorithm

• There are both Bayesian and frequentist implementations of EM; the
former estimates by maximum posterior and the latter by maximum
likelihood.

• EM is guaranteed to converge but
• it may converge to a local maximum and

• the convergence can be arbitrarily slow.

• For BNs, convergence is guaranteed only if all steps are carried out
with exact inference; the additional variability introduced by
approximate inference can derail convergence.
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Manual Approach: a Numeric Example

Consider the following simple numeric example.

inc = data.frame(
A = c(NA, "a1", "a1", "a1", NA),
B = c("b1", "b2", "b1", "b1", "b2"),
C = c("c1", "c1", NA, "c2", NA)

)
inc

A B C
1 <NA> b1 c1
2 a1 b2 c1
3 a1 b1 <NA>
4 a1 b1 c2
5 <NA> b2 <NA>

A

B C

If the data were complete, we could estimate the conditional
probabilities in the BN simply by counting the frequencies of the various
configurations of values.
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Manual Approach: a Numeric Example

Frequentist probability estimates would look like:

P(A = a1) =
𝑛a1

𝑛
P(A = a2) = 1 − P(A = a1)

P(B = b1 ∣ A = a1) =
𝑛b1,a1

𝑛a1

P(B = b2 ∣ A = a1) = 1 − P(B = b1 ∣ A = a1)

P(B = b1 ∣ A = a2) =
𝑛b1,a2

𝑛a2

P(B = b2 ∣ A = a2) = 1 − P(B = b1 ∣ A = a2)

P(C = c1 ∣ A = a2) =
𝑛c1,a2

𝑛a2

P(C = c2 ∣ A = a1) = 1 − P(C = c1 ∣ A = a1)

P(C = c1 ∣ A = a2) =
𝑛c1,a2

𝑛a2

P(C = c2 ∣ A = a2) = 1 − P(C = c1 ∣ A = a2)
41



Manual Approach: a Numeric Example

Looking at A first, the count we need is

𝑛a1 = 1l(1st observation is a1) + 1l(2nd observation is a1)+
1l(3rd observation is a1) + 1l(4th observation is a1)+

1l(5th observation is a1),

where 1l() is equal to 1 if its argument is true and 0 otherwise.

For the 2nd, 3rd and 4th observations we know that A = a1 , so we can
write

𝑛a1 = 1l(1st observation is a1)+1+1+1+1l(5th observation is a1).

From a different perspective, what we are saying is that we know that
those observations take value a1 with probability 1.
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Manual Approach: a Numeric Example

If we take this new perspective further, we can then write:

𝑛a1 = P(1st observation is a1) + P(2nd observation is a1)+
P(3rd observation is a1) + P(4th observation is a1)+

P(5th observation is a1).

If we had nomissing values, each of those probabilities would be equal
to either 0 or 1 and tallying them up would give us the usual empirical
frequency 𝑛a1 .
But since have missing values, all we can do is to say

𝑛a1 = P(1st observation is a1)+1+1+1+P(5th observation is a1).

This is easier to work with, because nowwe can use the axioms of
probability to borrow information from the other variables to fill the
missing values.
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Manual Approach: a Numeric Example

Consider that our BN can be written as

P(A, B, C) = P(A) P(B ∣ A) P(C ∣ A).

We cannot use P(A) to fill in the missing values because from the data we
would guess P(A = a1) = 1 and P(A = a2) = 0 since a2 is never
observed; but that is not desirable if we assume a2 can actually happen.

What we can do is to reverse the dependencies in the model to get

P(A) P(B ∣ A) P(C ∣ A) = P(A) P(B, C ∣ A) = P(A ∣ B, C) P(B, C)

an use P(A ∣ B, C) instead of P(A) to borrow the information from the
other variables.
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Manual Approach: a Numeric Example

This gets us to

𝑛(0)
a1 = P0(A = a1 ∣ B = b1, C = c1) + 1 + 1 + 1 + P0(A = a1 ∣ B = b1)

and if we assume as a starting point that

P0(A) = { 0.5 for a1
0.5 for a2 P0(A ∣ B, C) = { 0.5 for a1 for all B , C

0.5 for a2 for all B , C

P0(A ∣ B) = { 0.5 for a1 given b1
0.5 for a2 given b2

we can now compute

𝑛(0)
a1 =

1
2

+ 1 + 1 + 1 +
1
2

= 4

as an initial estimate for 𝑛a1 .
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Manual Approach: a Numeric Example

Replacing 𝑛a1 with 𝑛(0)
a1 , we can estimate

P1(A = a1) =
4
5

= 0.8, P1(A = a2) = 1 − P(A = a1) = 0.2.

Moving to B , what we need to estimate is

P(B = b1 ∣ A = a1) =
𝑛b1,a1

𝑛a1
=

𝑛b1,a1

4

where
𝑛b1,a1 = P(1st observation is b1 , a1) + P(2nd observation is b1 , a1)+

P(3rd observation is b1 , a1) + P(4th observation is b1 , a1)+
P(5th observation is b1 , a1)

= P(1st observation is b1 , a1) + 0 + 1 + 1 + 0
since only for the first observation B = b1 we do not know the value of A .
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Manual Approach: a Numeric Example

We are working with the joint frequencies of A and B ; hence we choose as
starting probabilities the joint uniform

P0(B, A ∣ C) =

⎧{{
⎨{{⎩

0.25 for b1 , a1 for both c1 , c2
0.25 for b1 , a2 for both c1 , c2
0.25 for b2 , a1 for both c1 , c2
0.25 for b2 , a2 for both c1 , c2

so that the probability of the first observation is

P(1st observation is b1 , a1)
= P0(A = a1 ∣ B = b1, C = c1)

=
P0(A = a1, B = b1 ∣ C = c1)

P0(B = b1 ∣ C = c1)

=
P0(A = a1, B = b1 ∣ C = c1)

P0(A = a1, B = b1 ∣ C = c1) + P0(A = a2, B = b1 ∣ C = c1)

=
0.25

0.25 + 0.25
= 0.5.
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Manual Approach: a Numeric Example

We can now compute

𝑛(0)
b1,a1 = 0.5 + 0 + 1 + 1 + 0 = 2.5

and in turn

P(B = b1 ∣ A = a1) =
𝑛(0)
b1,a1

𝑛(0)
a1

=
2.5
4

= 0.625

P(B = b2 ∣ A = a1) = 1 − P(B = b1 ∣ A = a1) = 0.375

which is the first of the two conditional distributions of B .
The second of the two conditional distributions of B is computed in the
same way, starting from

P(B = b1 ∣ A = a2) =
𝑛b1,a2

𝑛a2
=

𝑛b1,a2

𝑛 − 𝑛a1
=

𝑛b1,a2

1
.
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Manual Approach: a Numeric Example

Using the same P0(A ∣ B, C) as before,

𝑛b1,a2 = P(1st observation is b1 , a2) + P(2nd observation is b1 , a2)+
P(3rd observation is b1 , a2) + P(4th observation is b1 , a2)+
P(5th observation is b1 , a2)

= P(1st observation is b1 , a2) + 0 + 0 + 0 + 0,

leading to 𝑛(0)
b1,a2 = 0.5 + 0 + 0 + 0 + 0 = 0.5.

If we replace 𝑛(0)
b1,a2 in the expression above we get

P1(B = b1 ∣ A = a2) =
𝑛(0)
b1,a2

𝑛 − 𝑛(0)
a1

=
0.5

5 − 4
= 0.5,

P1(B = b2 ∣ A = a2) = 1 − P(B = b1 ∣ A = a2) = 0.5.

This makes complete sense: we never observe the combination of values
b1 , a2 so there is no information to learn from the data. 49



Manual Approach: a Numeric Example

As for C , what we need to estimate is

P(C = c1 ∣ A = a1) =
𝑛c1,a1

𝑛a1

where we know that 𝑛(0)
a1 = 4 from before and

𝑛c1,a1 = P(1st observation is c1 , a1) + P(2nd observation is c1 , a1)+
P(3rd observation is c1 , a1) + P(4th observation is c1 , a1)+
P(5th observation is c1 , a1).

The starting probabilities are the joint uniform distribution over C and A

P0(C, A ∣ B) =

⎧{{
⎨{{⎩

0.25 for c1 , a1 given b1 , b2
0.25 for c1 , a2 given b1 , b2
0.25 for c2 , a1 given b1 , b2
0.25 for c2 , a2 given b1 , b2

.
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Manual Approach: a Numeric Example

Considering the partial observations we have for A and C , we can rewrite
the above as:

𝑛(0)
c1,a1 = P0(A = a1 ∣ C = c1, B = b1) + 1+

P0(C = c1 ∣ A = a1, B = b1) + 0+
P0(C = c1, A = a1 ∣ B = b2).

By the axioms of probability,

P0(A ∣ C, B) =
P0(C, A ∣ B)
P0(C ∣ B)

=
P0(C, A ∣ B)

P0(C, A = a1 ∣ B) + P0(C, A = a2 ∣ B)

=
0.25

0.25 + 0.25
= 0.5

P0(C ∣ A, B) =
P0(C, A ∣ B)
P0(A ∣ B)

=
P0(A, C ∣ B)

P0(C = c1, A ∣ B) + P0(C = c2, A ∣ B)

=
0.25

0.25 + 0.25
= 0.5
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Manual Approach: a Numeric Example

As a result, 𝑛(0)
c1,a1 = 0.5 + 1 + 0.5 + 0 + 0.25 = 2.25 and

P1(C = c1 ∣ A = a1) =
𝑛(0)
c1,a1

𝑛(0)
a1

=
2.25

4
= 0.56,

P1(C = c2 ∣ A = a1) = 1 − P(C = c1 ∣ A = a1) = 0.44.

The second conditional distribution of C ,

P(C = c1 ∣ A = a2) =
𝑛c1,a2

𝑛a2
,

requires 𝑛a2 = 1 from before and

𝑛c1,a2 = P(1st observation is c1 , a2) + P(2nd observation is c1 , a2)+
P(3rd observation is c1 , a2) + P(4th observation is c1 , a2)+
P(5th observation is c1 , a2)

= P0(A = a2 ∣ C = c1, B = b1) + 0 + 0 + 0+
P0(C = c1, A = a2 ∣ B = b2) = 0.5 + 0 + 0 + 0 + 0.25 = 0.75.
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Manual Approach: Summary

This gives the last conditional probability distribution:

P1(C = c1 ∣ A = a2) =
𝑛(0)
c1,a2

𝑛(0)
a2

=
0.75

1
= 0.75,

P1(C = c2 ∣ A = a2) = 1 − P(C = c1 ∣ A = a2) = 0.25.

What did we do?
1. We could not estimate the conditional probabilities due to the

missing values in the data.
2. We assumed all distributions were uniform as a starting point.
3. In the frequencies we needed to estimate the conditional

probabilities, we replaced the missing values with the probabilities
of observing corresponding values.

4. We computed the frequencies, and used them to compute the
conditional probabilities in the BN.
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Manual Approach: Summary

A

a1
a2

B

b1
b2

C

c1
c2

Prior

A

a1
a2

B

b1
b2

C

c1
c2

Step 1

A

a1
a2

B

b1
b2

C

c1
c2

Step 2

... and so on, and so forth...
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The EM Algorithm, Unknown Graph Structure

Learning the (CP)DAG of a BN in the presence of missing data (in addition
to the parameters) is a problem that is challenging from both a statistical
and a computational point of view. Friedman extended the EM algorithm
to work for this task, and called the resulting algorithm Structural EM:

1. Start with a BN ℬ0 with an empty DAG 𝒢0 (with no arcs).
2. As long as ℬ𝑖 is different from 𝐵𝑖−1:

2.1 Expectation step: impute the missing data with their posterior
expectations or their maximum likelihood estimates using the
current BN.

2.2 Maximisation step: learn an updated BN from the completed data.
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The MARKS Example, Revisited (I)

ldmarks = data.frame(dmarks, LAT = factor(rep(NA, nrow(dmarks)),
levels = c("A", "B")))

imputed = ldmarks
imputed$LAT = sample(factor(c("A", "B")), nrow(dmarks), replace = TRUE)

# initialise an empty BN that includes LAT.
bn = bn.fit(empty.graph(names(ldmarks)), imputed)
bn$LAT = array(c(0.5, 0.5), dim = 2, dimnames = list(c("A", "B")))

# three manual iterations of structural EM.
for (i in 1:3) {

# expectation step.
imputed = impute(bn, ldmarks, method = "bayes-lw")
# maximisation step (forcing LAT to be connected to the other nodes).
dag = hc(imputed, whitelist = data.frame(from = "LAT", to = names(dmarks)))
bn = bn.fit(dag, imputed, method = "bayes")

}#FOR

# same, but automatically.
bn = structural.em(ldmarks, maximize = "hc",
maximize.args = list(whitelist = data.frame(from = "LAT", to = names(dmarks))),
impute = "bayes-lw", fit = "bayes", start = bn, return.all = TRUE)
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The MARKS Example, Revisited (II)

From Structural EM we get putative class assignments for the students,

table(bn$imputed$LAT)

A B
70 18

and parameters for the CPTs conditional on class.

coef(bn$fitted$ANL)
, , LAT = A

ALG
ANL [15,47.5] (47.5,80]
[9,39.5] 0.6132 0.0895
(39.5,70] 0.3868 0.9105

, , LAT = B

ALG
ANL [15,47.5] (47.5,80]
[9,39.5] 0.6644 0.5000
(39.5,70] 0.3356 0.5000
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Imputing Missing Data

Imputing missing values in an incomplete data set implies:
• replacing themwith their posterior expectations or maximum a
posteriori estimates in a Bayesian setting;

• replacing themwith their maximum likelihood estimates, possibly
using their parents, in a frequentist setting.

In both cases:
• we need a fully specified BN to do it;
• it is preferable to learn the BN in a Bayesian/frequentist way to
perform imputation in a Bayesian/frequentist way;

• all the information needed to make inference on each node is
included in its Markov blanket, so we do not need the rest of the BN
to impute missing values for that node.
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Relevant Functions in bnlearn

• inference: cpquery() and cpdist() .

• missing data: impute() and structural.em() .
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Summary

• BNs are defined as probabilistic models, but with some care it is
possible to use them as causal models. We need additional
assumptions and latent variables are a constant source of
difficult-to-debug problems.

• Inference is different for causal BNs: it focuses on simulating
interventions andmeasuring their effects as opposed to compute
conditional probabilities of events for the original BN.

• A related problem in learning BNs and performing inference is dealing
with missing data by applying algorithms such as EM to these tasks.

• BNs provide a nice way to represent and reason about different
patterns of missingness.

• BNs can also be used for counterfactuals, which are the key to
achieving fairness in our models.
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Thanks!

Any questions?


