
Statistical Programming
Michaelmas Term, 2017

Marco Scutari

scutari@stats.ox.ac.uk
Department of Statistics

University of Oxford

January 9, 2018

mailto:scutari@stats.ox.ac.uk

Course Information

Lectures

Week 1: Monday/Wednesday 10am, Tuesday/Thursday 10am (Worksheets)

Week 2: Monday/Wednesday 10am, Tuesday/Thursday 10am (Worksheets)

Week 3: Monday/Wednesday 10am, Tuesday/Thursday 10am (Worksheets)

Week 4: Monday/Wednesday 10am, Tuesday/Thursday 10am (Worksheets)

Practicals

Week 4: Friday 11am (not assessed)

Week 6: Friday 11am (not assessed)

Trinity: Week-Long Practical (assessed)

Reference Books (further references in the next slide)

HW Wickham H (2014). Advanced R. Chapman & Hall.

CR Crawley M (2012). The R Book. Wiley, 2nd edition.

Marco Scutari University of Oxford

Other Useful Books

General Programming
• Myers GJ, Sandler C and Badgett T (2012). The Art of Software Testing. Wiley.

• Hunt A and Thomas D (1999). The Pragmatic Programmer. Addison Wesley.

• McConnell S (2004). Code Complete. Microsoft Press.

Scientific Programming
• Venables WN and Ripley BD (2003). Modern Applied Statistics with S. Springer, 4th

edition.

• Chambers J (2010). Software for Data Analysis: Programming with R. Springer.

• Spector P (2008). Data Manipulation with R. Springer.

• Maindonald J and Braun WJ (2003). Data Analysis and Graphics using R. Cambridge
University Press, 3rd edition.

Scientific Data Visualisation
• Murrell P (2011). R Graphics. CRC, 2nd edition.

• Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer.

• Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis.

Scientific Report Writing and Reproducible Research
• Gandrud C (2015). Reproducible Research with R and RStudio. CRC, 2nd edition.

• Xie Y (2015). Dynamic Documents with R and knitr. CRC, 2nd edition.

Marco Scutari University of Oxford

Overview

1. Statistical Computing: What Is It?
Writing scientific software and data analysis pipelines, popular programming languages.

2. The R Programming Language
Basic data types and structures. Importing and exporting data. Efficient vector

computations. Graphics and figures. Notions of numeric optimisation and simulation.

3. Algorithms, Data Structures and Computational Complexity
Pseudocode. Time and space complexity. Big-O notation.

4. Computational Architectures and Parallel Computing
Distributing computations across computers. Parallel and sequential algorithms.

Efficiency gains and overhead.

5. Testing, Debugging, Benchmarking, Profiling Code
Good practices in software development. Function contracts and testing. Finding and

fixing bugs. Performance assessment with benchmarking and profiling.

6. The Hadleyverse: dplyr & Co.
Modern data manipulation tools: pipes and the dplyr package.

7. Literate Programming and Reproducible Research
Documenting software and data analysis with literate programming.

Marco Scutari University of Oxford

Lecture Plan

L1: Statistical Computing: What is it? P1: Worksheet 1

L2: Algorithms, Data Structures and Computa-
tional Complexity

P2: Worksheet 2

L3: Structuring Code: Files and Functions P3: Worksheet 3

L4: Classes and Methods P4: Worksheet 4

L5: Testing, Debugging, Benchmarking, Profil-
ing Code

P5: Worksheet 5

L6: Computational Architectures and
Parallel Computing

P6: Worksheet 6

L7: The Hadleyverse: dplyr & Co., Literate Pro-
gramming and Reproducible Research

P7: Worksheet 7

L8: Distributing Code and Analyses: R Packages P8: Worksheet 8

Marco Scutari University of Oxford

Statistical Computing:

What is it?

Marco Scutari University of Oxford

Statistical Computing: What is it?

The Definition of Statistical Computing

Statistical computing deals with providing the computational tools for
statistics (i.e. implementing software to do statistics on a computer) by
using concepts and techniques from computer science.
The two main points we focus on are:

• the design and analysis of algorithms, to know what to expect from
and how to implement an algorithm describing a statistical method;

• best practices in producing, documenting, assessing and distributing
computer programs implementing statistical methods or the analysis
of a specific data set.

The converse is computational statistics: the design of computationally
intensive statistical methods that can only be used on computers
regardless of the size of the problem. Some examples are the bootstrap,
permutation tests, Markov chain Monte Carlo methods, etc.

Marco Scutari University of Oxford

Statistical Computing: What is it?

And That is Why the Course Focuses on R

2016from IEEE Spectrum 2014

(And that is why you should get familiar with Python as well...)

Marco Scutari University of Oxford

Statistical Computing: What is it?

A Panoramic of Programming Languages

Choosing the right programming language for the job is crucial to solve
it efficiently. The distinctions that matter the most in our case are:

• high-level languages (more human-readable, more difficult to
optimise for performance) vs low-level languages (less
human-readable, better control of implementation details);

• domain languages (geared towards a specific task, bad at anything
else) vs general-purpose languages (which can do many things well,
so you can build one whole software project without mixing
languages);

• availability of libraries for statistics and machine learning (because
we do not want to reimplement all kinds of models).

This leaves us with C/C++ for low-level high-performance code and R,
Python for higher level code. R implements more models, but Python is
more versatile (and catching up in the library department).

Marco Scutari University of Oxford

Statistical Computing: What is it?

R: Pros & Cons

Pros:

• Thousands of packages, designed, maintained and widely used by
statisticians, implementing most existing models and techniques.

• Very good at producing professional-quality plots and figures.

• Very flexible as a programming language, which is comparatively
easy to code in; that in turn makes it possible to implement what is
missing.

Cons:

• Thousands of packages designed and maintained by statisticians
(who are not professional programmers, so the quality of those
packages is often very bad). Also, no common naming convention.

• Very flexible as a programming language, which means often your
code is not doing what you think it is doing.

• Numerical, analytical, optimisation methods are largely missing.

Marco Scutari University of Oxford

Statistical Computing: What is it?

R: A Language and an Environment

R is both a language and an environment.

R as a language started as a clone of the S programming language,
initially released in 1994 and again in stable form in 2000. R is
high-level, interpreted language that is meant to act as the interface
between the user and well tested C and Fortran libraries. It is still like
that today: the only way to write efficient code is to leverage those
libraries as much as possible, because R code can be very slow even on
modern hardware.

R as an environment provides a cross-platform terminal (available on all
desktop operating systems) as well a distributed repository of packages,
the Comprehensive R Archive Network (CRAN).

R is free software, as are almost all R packages.

Marco Scutari University of Oxford

Statistical Computing: What is it?

Online Resources

Home Page: www.r-project.org

Home page of the R Project; this where you download R from.

CRAN: cran.r-project.org

The central repository of CRAN, where you download packages from.

GitHub: github.com

Many more packages here.

RSeek: www.rseek.org

A specialised search engine for content related to R, including
packages, mailing list, blog posts, etc.

MetaCRAN: www.r-pkg.org

A parallel package repository that makes the source code of all
packages accessible through a web interface.

Rstudio: www.rstudio.com

The only integrated development environment (IDE) explicitly
designed for the R language.

Marco Scutari University of Oxford

www.r-project.org
cran.r-project.org
github.com
www.rseek.org
www.r-pkg.org
www.rstudio.com

Statistical Computing: What is it?

The Architecture of the R Environment

CORE
PACKAGES

CRAN
PACKAGE

CRAN
PACKAGE

R
INTERPRETER

PACKAGE
COMPILED

CODE

R CORE
C CODEEXTERNAL

LIBRARIES
(e.g. BLAS)

R CORE
FORTRAN

CODE

COMPILED CODE

THE USER
(YOU, TYPING CODE)

Marco Scutari University of Oxford

Statistical Computing: What is it?

Data Types and Vectors

All the interactions between different parts of R are built on the
following atomic types (i.e. kinds of variables that are uniform and do
not have internal structure)

• integer: 1L, 2L, 42L, . . .
• numeric: pi, 0.25, +Inf, . . .
• logical: TRUE, FALSE.
• character: "lorem ipsum", "a", "", . . .

NOTE:

• integer numbers are treated as numeric unless you postfix them
with L (stands for “literal”);
• all these types can also be NA, NaN, NULL (and you should take that

in account when writing code);
• R does not really have scalar values, all variables are vectors; scalars

are length-1 vectors and you can also have zero-length vectors,
which tend to make your code crash.

Marco Scutari University of Oxford

Statistical Computing: What is it?

Computers and Real Numbers: the Floating Point

A very, very common source of programming errors is misunderstanding
how real numbers (numeric) are stored by computers: by using a
floating point form like tag × baseexponent with a decimal point
positioned depending on the magnitude of the number.
Some fun facts about floating point arithmetic:
• computers are binary, so any number that cannot be expressed as a

power(s) of 2 cannot be stored exactly and will be rounded;
• numeric values use 8 bytes of memory, which means numbers will

be truncated to fit in 264 − 1 bits;
• the smallest representable number (which includes partial results like

differences) is given by sqrt(.Machine$double.eps)

≈ 1.5× 10−8; smaller numbers underflow to zero (log-scale is your
friend);
• large numbers are not representable exactly, not even round

numbers;
• look up ”Why doesn’t R think these numbers are equal?” on Google

for more.Marco Scutari University of Oxford

Statistical Computing: What is it?

Yes, It Happens in Real Life

sqrt(2) * sqrt(2) == 2

[1] FALSE

(2^(0.5))^2 %% 1 == 0

[1] FALSE

sqrt(2) * sqrt(2) - 2

[1] 4.44e-16

0.1 + 0.1 + 0.1 == 0.3

[1] FALSE

0.1 * 3 == 0.3

[1] FALSE

1e99 == 1e99 + 1

[1] TRUE

1 - 1e-20 == 1

[1] TRUE

Marco Scutari University of Oxford

Statistical Computing: What is it?

Operator Precedence

Together with floating point arithmetic, another very subtle source of
confusion is operator precedence. R implements all the usual arithmetic
(+, -, *, /, %%, ^), logical (|, ||, &, &&) and linear algebra operators
(%*%). In which order are they evaluated? Consider the following:

-2^{0.5}
[1] -1.41

(-2)^{0.5}
[1] NaN

-(2^{0.5})
[1] -1.41

TRUE || FALSE == FALSE || FALSE

[1] TRUE

(TRUE || FALSE) == (FALSE || FALSE)

[1] FALSE

TRUE || (FALSE == FALSE) || FALSE

[1] TRUE

Therefore:

• always add spaces around operators to make them stand out;

• do not be afraid to use parentheses to make statements
unambiguous.

Marco Scutari University of Oxford

Statistical Computing: What is it?

Data Structures: Vectors, Matrices and Arrays

As we noted above, both scalars and vectors are vectors in R.

Matrices (2 dimensions) and arrays (3+ dimensions) are also vectors;
their columns are concatenated in a one-dimensional vector and the
dimensions are saved as a separate attribute.

m = matrix(c(1.5, 2, 4.3, 0.9), ncol = 2, nrow = 2)

m

[,1] [,2]

[1,] 1.5 4.3

[2,] 2.0 0.9

dput(m)

structure(c(1.5, 2, 4.3, 0.9), .Dim = c(2L, 2L))

As you can see the values of the cells are stored in column-major order.
A side-effect of this representation is that all the value must be of the
same atomic type (e.g. all integer, all numeric, etc.).

Marco Scutari University of Oxford

Statistical Computing: What is it?

Data Structures: Factors

Another data structure that is fundamentally a vector with attributes
are factors, which are used to store categorical and ordinal variables
(finite set of values, represented as strings, possibly ordered).

rgb = factor(c("red", "blue", "green", "red", "green"))

levels(rgb)

[1] "blue" "green" "red"

dput(rgb)

structure(c(3L, 1L, 2L, 3L, 2L), .Label = c("blue", "green",

"red"), class = "factor")

R stores them as an integer vector (note the L notation) whose values
are the indexes of the labels of the levels of the factor. The order of
the levels is irrelevant for categorical variables, it matters only for
ordinal variables.

Marco Scutari University of Oxford

Statistical Computing: What is it?

Data Structures: Lists and Data Frames

We also data structures that can hold heterogeneous data: R provides the
list and the data.frame. A list is a collection of arbitrary R objects (vectors,
factors, other lists); it places no restriction on what it can hold.

ll = list(rgb, m, TRUE)

dput(ll)

list(structure(c(3L, 1L, 2L, 3L, 2L), .Label = c("blue", "green",

"red"), class = "factor"), structure(c(1.5, 2, 4.3, 0.9), .Dim = c(2L,

2L)), TRUE)

A data frame is simply a list of equal-length vectors, which can be of different
types; it is the most common data structure to store real-world data for
analysis.

df = data.frame(rgb, intensity = c(255L, 0L, 35L, 112L, 60L))

dput(df)

structure(list(rgb = structure(c(3L, 1L, 2L, 3L, 2L), .Label = c("blue",

"green", "red"), class = "factor"), intensity = c(255L, 0L, 35L,

112L, 60L)), .Names = c("rgb", "intensity"), row.names = c(NA,

-5L), class = "data.frame")

Marco Scutari University of Oxford

Statistical Computing: What is it?

Which One Should You Choose?

Sometimes the nature of the data dictates which data structure(s) you should
use; sometimes you will have to choose yourself between several alternatives.
That is an important choice: using the wrong data structure will make your
code needlessly more complicated, use more memory, and make your code
slower. Some considerations:

• If your code will include many linear algebra operations, use a matrix
instead of a data frame; otherwise R will convert your data frame to a
matrix and it use 100% more memory. (Interestingly, that is also true for a
few other common methods such as computing covariance and correlation
matrices).

• If you are not using much linear algebra, use data frames. Sometimes R
decides it need to make a copy of an object when you modify it, but in the
case of data frames it only copies the modified columns.

• Factors tend to make for faster code than character vectors.

• Integers make for faster code than numeric vectors, but the difference is
tiny. (And R may convert them anyway and waste memory.)

Marco Scutari University of Oxford

Statistical Computing: What is it?

Conclusions and Remarks

• R is one of the obvious choices for programming languages in
machine learning and data science, and it is especially designed to
be easy to use for that. The alternative is Python, which implements
fewer models but is general-purpose.

• R is an interpreted programming language, which means that your
code is parsed and interpreted each time you write it. It is built as a
wrapper around time-tested C and Fortran libraries, and this is where
its speed comes from.

• Beware of floating point arithmetic and operator precedence when
writing code (not specific to R, it is the same in Python).

• R provides a number of simple (vectors, matrices, factors) and more
complex (lists, data frames) data structures; using them
appropriately is crucial to produce good code.

Marco Scutari University of Oxford

Algorithms, Data Structures and

Computational Complexity

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

A Formal Description of an Algorithm: Pseudocode

An algorithm is a list of steps to be performed in order (thus defining a
sequence of operations) to solve a problem. It is meant to be an
unambiguous description of the steps you must go through to get to the
solution (output) from the available information (input).

While algorithms are ultimately meant to be implemented in a
programming language and to be executed by a computer, it is also
useful to study them in abstract. In order to do that, we write them in
pseudocode: an informal high-level description that uses the structural
conventions of a normal programming language, but is intended for
human reading rather than computer execution.

No standard for pseudocode syntax exists, and you will find several
styles that vary from “almost identical to R code” to “almost identical
to a free-form description”.

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

An Example of Pseudocode

Hartemink’s Information-Preserving Discretisation
Input: a data set X = Xi, i = 1, . . . , p where all Xi are continuous variables.
Output: a data set with p discrete variables, each with k2 levels.

1. Discretise each variable independently using quantile discretisation and a
large number k1 of intervals, e.g., k1 = 50 or even k1 = 100.

2. Repeat the following steps until each variable has k2 � k1 intervals,
iterating over each variable Xi, i = 1, . . . , p in turn:

2.1 compute

MXi =
∑
j 6=i

MI(Xi, Xj);

2.2 for each pair l of adjacent intervals of Xi, collapse them in a single
interval, and with the resulting variable X∗i (l) compute

MX∗
i (l)

=
∑
j 6=i

MI(X∗i (l), Xj);

2.3 set Xi = argmaxXi(l) MX∗
i (l)

.

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Algorithm Analysis and Computational Complexity

Computational complexity is a branch of computer science that focuses
on classifying computational problems according to their inherent
difficulty:

• as a function of input size (sample size n→∞, number of variables
p→∞);

• as a function of how many resources will be used, in particular time
(e.g. CPU time spent) and space (e.g. RAM or hard disk use);

• on average (how long it will typically take) or in the worst case (how
long it can possibly take).

This means that we can make educated guesses about how much
computational resources an algorithm will take just from its
specification; although the actual implementation details also play an
important role. This is called algorithm analysis.

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

How Many Steps is it Going to Take?

The first and most important aspect in algorithm analysis is time
complexity, that is, how many steps or how many operations the
algorithm will take to complete. In order to do that we will simplify the
analysis by assuming that:

• all operations take the same time, which we abstract with a
theoretical complexity of 1;

• we only care about the class of computational complexity of
algorithms, which we denote with the big-O notation, focusing on
their behaviour for large inputs (all algorithms are fast with small
input).

Big-O notation: an algorithm has a complexity f(N) = O(g(N)) if
there exist positive constants n0 and c such that f(N) 6 c · g(N),
∀n > n0.

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Classes of Computational Complexity

N

co
m

pl
ex

ity

0

20

40

60

80

100

5 10 15 20 25 30

O(1)
O(logN)
O(N)
O(NlogN)
O(N2)
O(2N)
O(N!)

Up to O(N) complexity is considered good, O(N logN) is still OK, O(N2) is feasible in
practice depending on the problem, anything above O(N2) is bad news.

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Worst Case, Average Case, Best Case

More in detail, we may want to investigate more than just the average
time complexity because the actual time complexity can vary by orders
of magnitude depending on the nature of the input (for the same N).
To do this we look at:

• The best case scenario, which we describe with the big-Omega
notation: f(N) = Ω(g(N)), f(N) > c · g(N). It represents a lower
bound in time complexity.

• The average case, which we describe with the big-Theta notation:
f(N) = Θ(g(N)), c1 · g(N) 6 f(N) 6 c2 · g(N). It represents the
average time complexity.

• The worst case scenario, which we describe with the big-O notation.

In practice, this notation is usually completely disregarded and people
just say things like “it is O(g(N)) on average and O(h(N)) in the worst
case” using the big-O notation for all three cases.

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Comparing Between Classes, Comparing Within Classes

How do we use the big-O notation to make comparisons?

• If we are comparing algorithms in different classes of complexity, can
concentrate only on the leading term and ignore all other terms in
f(N) and even the leading coefficient:

O(3 · 2N + 3.42N2)� O(2N3 + 3N2) becomes O(2N)� O(N3).

• If we are comparing algorithms in the same class of complexity, then
we usually report the leading term and its coefficients, sometimes
followed by the second largest term if it is relevant for the analysis:

O(1.2N2 + 3N)� O(0.9N2 + 2 logN) becomes O(1.2N2)� O(0.9N2);

O(1.2N2 + 3N)� O(0.9N2 + 5N) stays the same.

NOTE: all the examples here assume the size of the input can be
summarised by a single parameter N , but often we need more (e.g.
both sample size and number of variables). In that case, algorithms
belong to different classes for different parameters (e.g. O(NM2)).

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Case Study: Fitting a Linear Regression Model

As you all know, the least squares/maximum likelihood estimate of the
regression coefficients β in a linear regression model is

β̂
p×1

= (X
p×n

T X
n×p

)−1 X
p×n

T y
n×1

and now we wonder, what is the time complexity of computing this
estimate? Among the several ways of computing β̂, we will look into:

• using the closed-form formula above (the naive way);

• using the QR decomposition of X (how it is done in scientific
software).

We characterise the size of the input using both n (i.e. diverging sample
size) and p (i.e. high-dimensional samples).

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Using the Closed-Form Formula

The steps we would perform if we were computing β̂ if we were doing it
by hand are

1. compute XTX;

2. take the result and compute (XTX)−1;

3. compute XTy;

4. multiply the results from steps 2 and 3.

From easily available sources (Wikipedia) we have that:

• multiplying an r × s matrix and an s× t matrix takes O(rst)
operations (multiplying and summing their cells);

• computing the inverse of an r × r matrix is O(r3) using a Cholesky
decomposition or Gram-Schmidt.

Therefore, step 1 has time complexity O(pnp) = O(np2), step 2 is
O(p3), step 3 is O(np) and step 4 is O(p2). The overall time complexity
is O(np2 + p3 + np+ p2) = O(p3 + (n+ 1)p2 + np).

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

What Does That Mean? Can we do Better?

The interpretation of the overall time complexity is a follows:

• it is O(p3) in the number of parameters p
or equivalently:
if p doubles, it takes 8× as long to compute;

• it is O(n) in the sample size n
or equivalently:
if n doubles, it takes 2× as long to compute.

You can match this theoretical complexity with the actual running time
for on given n and p and you will know how long your computer will
take to estimate β̂ for any value of n and p.

Can we do better? Only for extremely large matrices or by making more
assumptions. For example, the Strassen algorithm performs matrix
inversion in O(r2.8) instead of O(r3) for r > 1000.

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Using the QR Decomposition

Starting from the Xβ = y formulation of the linear regression model,
we can:

1. compute the QR decomposition of X (Q is n× p, R is p× p);

2. rewrite the problem as Rβ = QTy;

3. compute QTy;

4. solve the resulting (triangular) linear system for β.

For time complexity we have that:

• solving an r × s linear system with Gram-Schmidt is O(rs2);

• back-substitution to solve the system in step 4 is O(s2).

Therefore, step 1 is O(np2) , step 3 is O(np) and step 4 is O(p2); the
overall time complexity is O(np2 + np+ p2) = O((n+ 1)p2 + np).
Again, we can do better (Gram-Schmidt + Householder transformations
is O(rs2 − s3/3) instead of O(rs2)).

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Comparing the Closed-Form Formula and QR

In conclusion:

• the closed-form formula for β̂ is O(n) (linear in the sample size) and
O(p3) (cubic in the number of regressors);

• The QR approach is again O(n) but O(p2) (quadratic in the number
of regressors).

Which algorithm is best depends on the data you expect to work on:

• if n→∞ but p is bounded, then it should not make much
difference;

• if p→∞ then the QR approach will be faster (i.e. the time
complexity is lower).

However, note that there are a number of additional considerations you
should weight in choosing which algorithm to use: the matrix inverse in
the closed-form formula is known to be numerically unstable, which is
why the QR method is preferred in scientific software. And then there is
space complexity...

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

A Second Kind of Complexity: Space Complexity

The second most important measure of complexity is space complexity,
the number of memory cells which an algorithm needs. Unlike time
complexity, it is well known how much memory each data type will use,
so there is no need to define an abstract memory cell.

integers real numbers strings

4 or 8 bytes 4 to 10 bytes 1 to 4 bytes per character

Arguably, space complexity can actually be more important than time
complexity: in principle, you can wait a bit longer to get the results, but
if your program runs out of memory it will crash and you will get no
results at all. Typically, there is a time-space tradeoff involved in a
problem, that is, it cannot be solved with few computing time and low
memory consumption. One then has to make a compromise and to
exchange computing time for memory consumption or vice versa.

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Case Study: Dense and Sparse Matrices

Matrices in which most cells are zero are called sparse matrices, as
opposed to dense matrices in which most or all elements are non-zero.
In the case of dense (m× n) matrices we need to store in memory the
values of all the cells, which means the space complexity is O(mn).
However, in the case of sparse matrices we can just store the non-zero
values and their coordinates, with the understanding that all other cells
are equal to zero.

R provides several such representations in the Matrix package.

library(Matrix)

m = Matrix(c(0, 0, 2:0), 3, 5)

m

3 x 5 sparse Matrix of class "dgCMatrix"

##

[1,] . 1 . . 2

[2,] . . 2 . 1

[3,] 2 . 1 . .

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Comparing Space Complexity

How are the elements of m stored in memory? Here is how:

str(m)

Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

..@ i : int [1:6] 2 0 1 2 0 1

..@ p : int [1:6] 0 1 2 4 4 6

..@ Dim : int [1:2] 3 5

..@ Dimnames:List of 2

.. ..$: NULL

.. ..$: NULL

..@ x : num [1:6] 2 1 2 1 2 1

..@ factors : list()

From the documentation, i contains the 0-based row numbers for each
non-zero element in the matrix; p contains the index, for each column, of the
initial (zero-based) index of elements in the column; and x contains the values
of the non-zero cells.

Total space complexity: O(3z) where z is the number of non-zero cells. In
terms of real memory, O(2z) ∗ 4 bytes +O(z) ∗ 8 bytes = O(16z) bytes.

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

What is the Trade-Off?

So, dense matrices have a space complexity of O(8mn) bytes and sparse
matrices have a space complexity of O(16z) bytes; if z � mn we can save
most of the memory we would have used. What is the catch?

The catch is that operations may have a higher time complexity for sparse
matrices than for dense matrices. Even the most simple: looking up the value
of a cell (i, j) has time complexity O(1) in a dense matrix, but for a sparse
matrix we need to

1. look up what are the first and the last values in x for the column j by
reading the jth element of p;

2. position ourselves on the row number for that first value in i, and read
every successive number until we find the row number j or we reach the
end of the column;

3. read the value of the cell from x, which has the same position in x as the
row number in i; or return zero if we reached the end of the column.

Total time complexity: O(1) +O(z/n) +O(1) = O(z/n) assuming z/n
non-zero elements per column on average. Is z/n 6 1?

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Reading Can Take Time, Writing Can Take Time

Reading a cell from a sparse matrix is potentially more expensive than
O(1). Assigning a non-zero value to a cell, however, is always more
expensive. For each of i and x we need to:

• allocate a new array of length z + 1;

• copy the z values from the old array;

• add the values corresponding to the new cell;

• replace the old array with the new one.

So time and space complexity both are O(z). Handling p is also O(z),
and it is more complex since we will need to recompute half of the
values on average.

This is troubling because we cannot predict the average time and space
complexity just looking at the input size: they will change during the
execution of our program as we assign new non-zero values to the sparse
matrix.

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Case Study: the Permutation Test for Zero Covariance

Consider the empirical covariance between two variables X and Y , with
n observations each:

COV(X,Y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

We can use a permutation test to compute the p-value for the
hypothesis H0 : COV(X,Y) = 0 vs H1 : COV(X,Y) 6= 0 as follows:

1. compute γ = COV(X,Y);

2. for B times:

2.1 create Y ∗b by permuting the elements of Y ;

2.2 compute γ∗b = COV(X,Y ∗b);

3. compute the p-value as the proportion of 1/B
∑B

b=1 1l(|γ∗b | > |γ|).

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Do I need to compute this?

The time complexity of computing the covariance is O(7n):

• O(2n) to compute x̄ and ȳ;

• O(4n) to compute the numerator;

• O(4n) to compute the denominator (some quantities are shared with the
numerator).

Therefore, the overall time complexity of the algorithm is O(10nB), and the
space complexity is O(B) to store the γ∗b . We can get away with computing
just

COV(X,Y) ∝
n∑

i=1

(xi − x̄)(yi − ȳ)

since the denominator is the same for (X,Y) and all (X∗, Y ∗) and thus
vanished in the comparison between γ and γ∗b . Then time complexity is O(2n)
for computing the means +O(3n) for the sum-product = O(5n); space
complexity is O(1) to store the two means. To compute the p-value, we do this
B times, so a semi-naive approach takes O(5nB) time and O(B) space.

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Caching is Good!

If we privilege time complexity, we can precompute and cache

x̃i = xi − x̄ and ỹi = yi − ȳ

so that COV(X,Y) ∝
∑n

i=1 x̃iỹi only takes O(n) time +O(2n) to
compute the means = O(3n) at the cost of having O(2n) space
complexity. (ȳ is identical to ȳ∗b , so we can permute the centred values
directly.) In other words, we can trade one order of magnitude of space
complexity for a 3.33× speed up. Thus we have O(3nB) and
O(2n+B) overall.

But we also care about space complexity; so we compute γ first and the
we sum the 1l(|γ∗b | > |γ|) as we compute them, instead of storing them;
the variable we use for that is called an accumulator variable. This
brings down space complexity from O(2n+B) to O(2n).

Marco Scutari University of Oxford

Algorithms, Data Structures and Computational Complexity

Summary and Remarks

• We can make a number of considerations on any algorithm before
implementing it in R code, just looking at it description.

• First, we can formalise its steps, the operations it performs, the
input data and the output using pseudocode.

• Then we can study it time and space complexity to see how it scales
with the size of the input (and how much hardware we will need to
run it).

• Finally, we can consider different forms and implementations of the
same algorithm by trading time complexity for space complexity or
vice versa. How the data are represented plays a key role in this.

Marco Scutari University of Oxford

Testing, Debugging,

Benchmarking, Profiling Code

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Software Quality Control

• Testing: verifying that code runs correctly by exercising the code
under known conditions and checking that results are as expected.
You do that during the process of writing the code, and when the
code is complete. Definitely before using it!

• Debugging: discovering causes of incorrect behaviour and repairing
them (repair is often easy, once you figure out the causes). This can
happen either during testing or when actually using the code.

• Benchmarking: measuring performance for given tasks to check that
it’s within acceptable bounds. You should ideally do that on dummy
data before using the code.

• Profiling: identifying performance bottlenecks and removing them to
make overall program performance acceptable. You do that when
you find out your program is too slow.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Function Contracts and Testing

Each function has an implied contract, which determines which
arguments it accepts (and legal values for each) and what is its return
value. A function fulfils its contracts if:

1. it returns the expected return value if all the arguments have legal
values;

2. it returns an error if one or more arguments have illegal values;

3. (optional) it warns the user (with a self-explanatory message) if the
values are legal but not necessarily meaningful, and tries to cope
gracefully.

To ensure that is the case, we must set up a suite of tests in which each
function in our program is called with different sets of legal and illegal
arguments.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Example: the Truncated Normal

The density function of the truncated normal distribution is defined as

f(x;µ, σ, l, u) =
1
σφ(x−µσ)

Φ(u−µσ)− Φ(l−µσ)
in [u, l] and zero elsewhere.

It can be readily implemented in R using dnorm() and pnorm().

truncated = function(x, mu, sigma, lower, upper) {

dens = (dnorm(x, mu, sigma) / sigma) /

(pnorm(upper, mu, sigma) - pnorm(lower, mu, sigma))

dens[(x < lower) | (x > upper)] = 0

return(dens)

}#TRUNCATED

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

What is the Contract of This Function?

From the mathematical definition, and taking into account the user’s
expectations, we have that:

• x should be a numeric vector, possibly of length zero.

• mu should be a numeric vector of length 1, which can assume any of
the special values below.

• sigma should be a numeric vector of length 1 and sigma >= 0.

• both lower and upper should be numeric vectors of length 1 and
lower <= upper.

All the arguments of truncated() should handle the special values
-Inf, +Inf, NA, NaN and NULL appropriately.

We also require the return value to be a numeric vector of the same
length as x containing only non-negative values (since it is a density
function).

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Different Types of Testing

Software testing falls into two categories:

• Unit testing means writing and running tests to exercise a
well-defined portion (unit) of the code, including individual
functions. You can and should test each unit as you’re developing it.

• System testing (also known as functional or integration testing)
involves running an entire program with known inputs. System
testing comes afterwards, given that each module in the program
works properly (passes unit tests), does the whole program work?

In both cases we want to take particular care and

• check outputs against known-good values from a different source;

• check boundary values values for each argument.

NOTE: here our whole program is a single function so the unit testing
and system setting coincide, but that is generally not the case.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Implementing Tests in R

Tests are implemented in R with a combination of try() (to catch errors) and
stopifnot() (to make the test fail if the desired condition is not met).

Example 1: x has an illegal (character) value. If we do

test = try({ truncated(x = "a", mu = 0, sigma = 1, lower = -2, upper = 2) })

then as expected try() says the result of the unit test is an error:

class(test)

[1] "try-error"

That is exactly what should happen, so we use stopifnot() to make the unit
test fail if test is not an error.

stopifnot(is(test, "try-error"))

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Implementing Tests in R

Example 2: we check the boundary case lower == upper; we expect that the
density should be a +Inf Dirac mass.

test = try({ truncated(x = 0, mu = 0, sigma = 1, lower = 0, upper = 0) })
test

[1] Inf

test does not contain an error, but the expected return value from
truncated. Hence we determine the outcome of the unit test with:

stopifnot(is.infinite(test) && (test > 0))

Example 3: we check the illegal case in which lower > upper.

test = try({ truncated(x = 0, mu = 0, sigma = 1, lower = 1, upper = 0) })
stopifnot(is(test, "try-error"))

Error: is(test, "try-error") is not TRUE

This is because we do not check for that (or, indeed, anything else) in the
function. Now that the unit test has highlighted the problem, we know how to
modify truncated() to match its contract.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Implementing Tests in R

Example 4: we know that if mu = 1, sd = 1, lower = -2, upper = 2

then the density should assume the value 0.41913 at x = 0.5.

test = try({ truncated(x = 0.5, mu = 1, sigma = 1, lower = -2, upper = 2) })
stopifnot(test == 0.41913)

Error: test == 0.41913 is not TRUE

Is that a bug in truncated()? Actually not, the problem is in the
comparison inside stopifnot(), which does not take into account
floating point errors and the fact that our reference value is rounded at
the 5th decimal. To check equality of two real numbers, always use
all.equal() with an acceptable tolerance.

stopifnot(all.equal(test, 0.41913, tol = 10^-5))

This modified check correctly determines that the unit test succeeded.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

How Many Tests, and How to Run Them?

The number of combinations of {valid, boundary, illegal} values for the
arguments increases with combinatorial speed in the number of arguments;
clearly we do not want to spend months writing unit and system tests!
Fortunately, an extensive research on commercial software shows that testing
3-way interactions catches about 90% of defects, and 2-way interactions catch
about 80%. Hence testing all {valid, boundary, illegal} for individual
arguments (while all other arguments have legal values), and then testing pairs
of {boundary, illegal} values (while all other arguments have again legal values)
is a good compromise.

The correct way to run tests is isolate them from each other and run them in a
clean R session. You can do that by

1. saving each unit test in a separate R file;

2. either source()ing each file in an empty, throw-away environment with:

source("test0001.R", local = new.env())

or directly from a command line with Rscript.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Debugging

Incorrect behaviour can manifest itself in three ways:

• your program exits with an error message;

• your program prints a warning, and you later find the results it
generated make no sense;

• your program seems to work correctly but the results make no sense.

In the first two cases we have some clue as to where the problem may
be, in the last case you have to find out from scratch.

1. Realise you have a bug: that is one of the reasons for having an
extensive unit and system test suite.

2. Make it repeatable: because you will need to reproduce it repeatedly
to isolate it (e.g. save the random seed).

3. Figure out where it is: that is what we are covering next.

4. Fix it and test it: add a unit/system test to your suite that triggers
the bug with the original code and does not with the fixed code.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Truncated Normal: Maximum Likelihood Estimates

truncated = function(x, mu, sigma, lower, upper) {

dens = (dnorm(x, mu, sigma) / sigma) /

(pnorm(upper, mu, sigma) - pnorm(lower, mu, sigma))

dens[(x < lower) | (x > upper)] = 0

return(dens)

}#TRUNCATED

truncated.loglikelihood = function(x, par)

sum(log(truncated(x, mu = par["mu"], sigma = par["sigma"],

lower = par["lower"], upper = par["upper"])))

maxlik = function(x, mu, sigma, lower, upper) {

optim(par = c(mu = mu, sigma = sigma, lower = lower, upper = upper),

fn = truncated.loglikelihood, x = x, method = "BFGS")

}#MAXLIK

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Debugging from an Error Message

So, let’s generate some random observations from a truncated normal
and compute the corresponding maximum likelihood estimates of the
parameters.

x = rnorm(1000, mu = 0, sigma = 1)

x = x[x > -4 & x < 4]

maxlik(x, mu = 0, sigma = 1, lower = -2, upper = 2)

Error in optim(par = c(mu = 0, sigma = 1, lower = -2, upper = 2), fn =

truncated.loglikelihood, : initial value in ’vmmin’ is not finite

The maximisation fails, with an error message from optim().
traceback() prints the backtrace (!) of function calls leading to the
(last encountered) error.

traceback()

2: maxlik(x, mu = 0, sigma = 1, lower = -2, upper = 2)

1: optim(par = c(mu = 0, sigma = 1, lower = -2, upper = 2),

fn = truncated.loglikelihood, x = x, method = "BFGS")

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Interactive Debugging

Since the error message is not clear on the exact nature of the problem,
we need to investigate what is going on with the optim() call inside
maxlik(). To do that, we set

options(error = recover)

which tells R to open an interactive debug prompt when an error occurs.
(The default action is to stop and print the error message.)

maxlik(x, mu = 0, sigma = 1, lower = -2, upper = 2)

Error in optim(par = c(mu = 0, sigma = 1, lower = -2, upper = 2), fn =

truncated.loglikelihood, : initial value in ’vmmin’ is not finite

Enter a frame number, or 0 to exit

1: maxlik(x, mu = 0, sigma = 1, lower = -2, upper = 2)

2: #3: optim(par = c(mu = 0, sigma = 1, lower = -2, upper = 2), fn = ...

Selection: 1

Called from: top level

Browse[1]> ls()

[1] "lower" "mu" "sigma" "upper" "x"

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Peeking Inside Functions

Now that we have an interactive debug prompt open inside maxlik(),
we can check a number of things. First, that the arguments that hold
the initial values have the values we specified. (That may not obviously
be the case when we have many nested function calls, and each
sanitised its arguments.)

Browse[1]> c(mu, sigma, lower, upper)

[1] 0 1 -2 2

Then, since the error message mentions initial value and not

finite, we check the return value truncated.wrapper() and we find
out that it is -Inf.

Browse[1]> truncated.loglikelihood(x, par = c(mu = mu, sigma = sigma,

lower = lower, upper = upper))

[1] -Inf

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Fixing the (First) Bug

A log-likelihood of -Inf means a likelihood of zero for at least one x; and that
can happen only if x is above upper or below lower.

range(x)

[1] -3.49 3.20

Now that we have identified (a first) problem, we can fix it; one option is to set
the likelihood to have a small positive value outside lower and upper. The
value should be so small that optim() cannot possibly choose it as the
maximum but large enough that it is not rounded to zero: the usual choice is
sqrt(.Machine$double.eps) ≈ 1.5× 10−8. Therefore:

truncated = function(x, mu, sigma, lower, upper) {

dens = (dnorm(x, mu, sigma) / sigma) /

(pnorm(upper, mu, sigma) - pnorm(lower, mu, sigma))

dens[(x < lower) | (x > upper)] = sqrt(.Machine$double.eps)

return(dens)

}#TRUNCATED
Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Is That All? More Bugs to Come

Now maxlik() completes without any error, but the parameter
estimates it returns are nonsensical; there are still bugs for us to fix.

maxlik(x, mu = 0, sigma = 1, lower = -2, upper = 2)$par

mu sigma lower upper

513 171393 -454908 455513

Going by elimination, truncated() should now be correct so the
problem should be either in truncated.loglikelihood(), maxlik()
or both. We now need to modify our code to print enough diagnostic
messages (often called tracing statements) to establish how the
optimization is carried out.

maxlik = function(x, mu, sigma, lower, upper) {

optim(par = c(mu = mu, sigma = sigma, lower = lower, upper = upper),

fn = truncated.loglikelihood, x = x, method = "BFGS",

control = list(trace = 2))

}#MAXLIK

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Drilling Down into the Code

Thanks to the trace argument, we find out a surprising fact: the
(log)likelihood decreases at every iteration! optim() returns the
minimum, not the maximum (as noted in the documentation).

maxlik(x, mu = 0, sigma = 1, lower = -2, upper = 2)$par

initial value -2160.305907

iter 10 value -15087.258331

iter 20 value -20754.663359

final value -25014.436139

converged

mu sigma lower upper

513 171393 -454908 455513

To find the maximum then we need to change the sign of the
loglikelihood in truncated.loglikelihood().

truncated.loglikelihood = function(x, par)

-sum(log(truncated(x, mu = par["mu"], sigma = par["sigma"],

lower = par["lower"], upper = par["upper"])))

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

One More Time!

maxlik(x, mu = 0, sigma = 1, lower = -2, upper = 2)$par

initial value 2160.305907

iter 10 value 1443.851256

iter 20 value 1323.314194

final value 1323.166567

converged

mu sigma lower upper

-0.0326 0.7424 -50.7471 3.9833

Now the estimates of mu and sigma are more or less on target, as is upper;
but lower is still completely wrong. Again there are no error messages, and
the tracing messages look fine. Going by exclusion again, the only argument of
optim() we have not touched yet is method, which determines which numeric
optimization algorithm will be used. Maybe we should try another one.

maxlik = function(x, mu, sigma, lower, upper) {

optim(par = c(mu = mu, sigma = sigma, lower = lower, upper = upper),

fn = truncated.loglikelihood, x = x, method = "Nelder-Mead")

}#MAXLIK

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Finally!

At long last, we now have maximum likelihood estimates that are close
to the parameter values we used to generate the data.

maxlik(x, mu = 0, sigma = 1, lower = -2, upper = 2)$par

mu sigma lower upper

-0.0327 0.7424 -3.6266 3.5094

To make debugging easier and faster, in your code you should:

• use clear error and warning messages;

• in the case of complex functions, add a trace or debug argument
that activates tracing statements;

• sanitise all arguments and not rely on the functions you call to do
so, so that the location of the errors is indicative;

• possibly check that the return value is legal before returning it.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

How Can You Debug Warning Messages?

You can turn all warnings into errors by setting the appropriate global
option:

options(warn = 2)

Then you can proceed to debug using the same techniques we have just
seen.

Possible values for this option are:

• less than zero: all warnings are ignored.

• zero (the default): warnings are stored until the top-level function
returns.

• one: warnings are printed as they occur.

• two or larger: all warnings are turned into errors.

See more in ?options.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Debugging in RStudio

(It works in the same way, but you click instead of calling R commands.)

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Benchmarking Running Times: system.time()

The most appropriate way of measuring the performance of a piece of R
code depends on how long it takes to run; but in most real-world cases
(running times > 60s) you can use system.time() to benchmark it.

x = rnorm(10^5, 0, 1)

x = x[x > -4 & x < 4]

system.time(replicate(100,

maxlik(x, mu = 0, sigma = 1, lower = -2, upper = 2))) / 100

user system elapsed

2.06584 0.00163 2.06788

The return value contains three values:

• user: time used by R;

• system: time used by the operating system (reading and writing files
to disc, allocating memory, sending data over the network, etc.);

• elapsed: the total running time (often called wall clock time).

NOTE: compute the time of several runs and then divide it by the
number of runs, for better precision.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Benchmarking Short Running Times: microbenchmark

system.time() is too inaccurate to benchmark small bits of code that take
only a few seconds to run. The microbenchmark package uses experimental
design techniques to give timings with a precision of 1 millisecond (10−3s).

library(microbenchmark)

df = as.data.frame(matrix(0, nrow = 1000, ncol = 1000))

m = numeric(ncol(df))

microbenchmark(

COLMEANS = m <- colMeans(df),

APPLY = m <- apply(df, 1, mean),

SAPPLY = m <- sapply(df, mean),

LOOP = for (i in seq(ncol(df))) m[i] <- mean(df[, i])

)

Unit: milliseconds

expr min lq mean median uq max neval cld

COLMEANS 4.95 5.16 7.03 5.70 6.65 44.31 100 b

APPLY 28.00 61.75 60.89 63.42 66.11 70.01 100 d

SAPPLY 3.90 4.12 4.32 4.27 4.48 5.44 100 a

LOOP 10.99 11.38 11.85 11.59 12.19 14.88 100 c

(Because loops can be faster than apply() if you misuse it.)

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Benchmarking to Check Computational Complexity

Benchmarking is also useful to check the computational complexity of
the R code implementing an algorithm; ideally, it should be the same as
the computational complexity of the theoretical algorithm. If the two
differ, our code is inefficient and we should profile it to find the reason.

For instance, matrix multiplication has a computational complexity
O(N2.5) for N ×N matrices.

size = c(10, 100, 250, 500, 750, 1000, 1500, 2000)

timing = numeric(length(size))

for (s in seq_along(size)) {

X = matrix(0, nrow = size[s], ncol = size[s])

timing[s] = system.time(replicate(100, t(X) %*% X))["elapsed"]/100

}#FOR

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Algorithm Complexity, R Code Running Time

size

se
co

nd
s

0

1

2

3

4

5

6

0 500 1000 1500 2000

R code
algorithm

The computational complexity of the R code is indeed O(N2.5), or more
precisely seconds = 3.174e-08 * size^2.5.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Profiling

Consider the microbenchmark() example once more. Why is apply()

is slow? We can find out by looking for parts of the code that take time
to run. Keep in mind that:

• producing a correct program is more important than producing a
fast program;

• 20% of the code will consume 80% of the overall running time;

• the number of lines of code has no relationship with the overall
running time;

• expectations about performance are often wrong - do not assume,
measure!

• it is almost impossible to identify performance bottlenecks before a
program is complete - write for clarity and profile at the end!

NOTE: we concentrate on execution speed, but it is important to profile
for memory use as well.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

The Old-Fashioned Way: Profiling with Rprof()

df = as.data.frame(matrix(0, nrow = 1000, ncol = 1000))

profile = tempfile()

Rprof(file = profile)

for (i in 1:1000) apply(df, 1, mean)

Rprof(NULL)

lapply(summaryRprof(profile)[c("by.self", "by.total")], head, n = 4)

unlink(profile)

$by.self

self.time self.pct total.time total.pct

"apply" 11.64 38.72 30.06 100.00

"unlist" 7.58 25.22 7.58 25.22

"aperm.default" 4.88 16.23 4.88 16.23

"mean.default" 1.90 6.32 2.06 6.85

##

$by.total

total.time total.pct self.time self.pct

"apply" 30.06 100.00 11.64 38.72

"as.matrix.data.frame" 10.02 33.33 0.60 2.00

"as.matrix" 10.02 33.33 0.00 0.00

"unlist" 7.58 25.22 7.58 25.22

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

The New Fashionable Way: Profiling with profvis

A more modern approach to profiling is implemented in the profvis
package, which is also well integrated in RStudio. Its provides a
profvis() function which works like Rprof().

library(profvis)

profvis({ for (i in 1:1000) apply(df, 1, mean) })

(It is preferable to use a for loop instead of replicate() because that would show up in the

profiling.)

The main advantages of profvis() are that:

• provides a graphical display of the profiling, either embedded in
RStudio or in a separate browser window (much like manual pages);

• profiles memory usage as well as running times.

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Profiling with profvis

Options ▾Flame Graph Data

27150msSample Interval: 10ms

Code File Memory (MB) Time (ms)

apply <expr> -3324 33618.8 27140

dim 0 12.3 10

as.matrix -1409 5835.1 6990

as.matrix.data.frame -1409 5835.1 6990

as.list -380.8 16.5 30

length -758.4 81.5 190

attr -1455.3 109.3 160

levels -4724.0 1552.9 1690

levels.default -763.5 415.4 430

FUN -5917.4 5688.1 5270

mean.default -3697.1 3248.2 3000

is.numeric -167.3 102.1 120

length 0 196.8 170

aperm -4928.3 8792.4 6140

…

…

…

Marco Scutari University of Oxford

Testing, Debugging, Benchmarking, Profiling Code

Summary and Remarks

• Writing code is only part of statistical programming.

• You should check that your code actually does what it is meant to
do (testing).

• You should investigate bugs and fix them - and then add more tests
to make sure they stay fixed (debugging).

• You should make sure your programs run fast enough to meet
deadlines and to handle large data sets (benchmarking & profiling).

• Last but not least, you should consider developing any kind of
scientific software as cycle: planning → analysis → design →
implementation → testing → and back again for changes in scope
and improvements.

Marco Scutari University of Oxford

Computational Architectures and

Parallel Computing

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Parallel Computing: Hardware

Parallel computing is defined as the execution of several calculations
simultaneously; this is one of the most common ways to speed up
computations, especially when we cannot define new algorithms with a better
computational complexity. It can be implemented as a combination of
hardware, software and algorithms. Hardware architectures are classified as:

• Single-Instruction, Single-Data (SISD): a single processing unit performing
a single operation on the same data (e.g. old single-processor single-core
computers).

• Multiple-Instruction, Single-Data (MISD): multiple processing units
performing different operations (independently and asynchronously) on the
same data.

• Single-Instruction, Multiple-Data (SIMD): multiple processing units
performing the same operation on multiple data (e.g. GPUs).

• Multiple-Instruction, Multiple-Data (MIMD): multiple processing units
performing different operations on multiple data (e.g. multi-core CPUs,
distributed computing).

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Parallel Computing: Software

As for the software, the most important characteristics are:

• who is performing the computations:

• the R process you are using;
• completely independent R processes (possibly running on different

computers);
• processes accessing the same session;
• threads within the same process (not really an option with R);

• how data is handled:

• only one copy (shared memory, or remote database);
• different copies for different processes/threads;

• how information is passed around:

• over a network connection;
• local inter-process communication;
• shared memory.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Common Scenarios for Hardware and Software

• Your Laptop

• Your CPU has a few cores (say 2, 4); you can use all but one, which
should be kept free for your operating system to use.

• You have limited memory (say 4GB), so having multiple copies of large
data sets around is not an option.

• A Compute Server

• More CPU power (say 32-64 cores) and more memory (128GB to 1TB).
• Typically data is read from and written to a separate server (with lots

of disk space) over the network, so importing and exporting data is
slow but moving it between processes is fast.

• All copies of the data are stored in the same pool of memory.

• Distributed Computing

• A number of servers (say, 20) each with a number of cores (8-16) and
decent memory (64GB to 128GB).

• Moving data to and from the servers (over the network) is slow, but
memory usage, disk usage and CPU load can be spread better.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Parallel Computing: Algorithms

It is important to note that the degree to which an algorithm can
leverage parallel processing depends on the nature of the problem it is
trying to address.

Some problems are embarrassingly parallel, that is, they can be split in
such a way that each part never needs to exhange information with
other parts.

Other problems cannot be fully parallelised, because their parts have to
communicate periodically with each other to synchronise their state. If
frequent synchronisations are required we speak of fine-grained
parallelism, and of coarse-grained parallelism if synchronisations are only
needed a few times over a long period of time.

Finally, some problems are inherently sequential, and cannot be
parallelised at all.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Parallel and Sequential Algorithms

EMBARRASSINGLY PARALLEL

PREPROCESSING POSTPROCESSING

1

2

3

4

PREPROCESSING POSTPROCESSING1 2 3

INHERENTLY SEQUENTIAL

COARSE-GRAINED PARALLEL

PREPROCESSING POSTPROCESSING

1

2

3

4

5

6

7

8

SYNC

FINE-GRAINED PARALLEL

PREPROCESSING POSTPROCESSING

1

2

3

4

5

6

7

8

SYNC SYNC

9

10

11

12

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

A Reality Check: Overhead

Ideally, we would expect that if

• an algorithm is embarrassingly parallel; and

• it takes Tsequential time to complete when performing all steps sequentially;

with a parallel implementation that uses M processes it would take

Tideal(M) =
Tsequential

M

whereas in practice it will take Treal(M) = Tideal(M) + Toverhead(M) with
Toverhead(M) increasing in M . There are several reasons for that:

• the steps of the algorithms that are executed in parallel take different times
to complete, so we must wait for the one that takes the longest;

• communication overhead (it takes time to send the data and collect the
results);

• bottlenecks (hard disks, network connections are shared between multiple
processes and can be saturated);

• if M � number of cores, not all processes can run at the same time.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Two Examples of Overhead

PREPROCESSING POSTPROCESSING1 2 3 4

PREPROCESSING POSTPROCESSING

1

2

3

4

PREPROCESSING

1

2 3

4

POSTPROCESSING

PREPROCESSING POSTPROCESSING1 2 3 4

PREPROCESSING POSTPROCESSING

1

2

3

4

PREPROCESSING POSTPROCESSING

1

2 3

4

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

The Law of Diminishing Returns

Eventually, as we add more processes, Treal(M + 1) > Treal(M) since

Tsequential
M + 1

+ Toverhead(M + 1) >
Tsequential

M
+ Toverhead(M)

simplifies to

Tsequential
M(M + 1)

6 Toverhead(M + 1)− Toverhead(M)

which holds for large enough M as the left-hand converges to zero, but the
right-hand side generally does not.

This is called the law of diminishing returns: adding more and more processes
results in smaller and smaller gains and it eventually makes things slower.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

A Remedy for Computational Complexity?

Another point that is worth noting is that parallel computing is not a
remedy for high computational complexity because:

• the size N of the input can grow and grow, but the number of
available processor cores is fixed (and that in turn limits M as well);

• if the computational complexity of the algorithm is larger than
O(N), even adding 1 new process for each new input would not
prevent longer running times;

• the law of diminishing returns limits the number of processes which
we can use effectively.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Parallel Computing in R: the parallel Package

The standard solution to perform parallel computing in R is the parallel
package (which incorporated the old snow and multicore packages).

parallel implements a master-slave
setup in which the user works on the
(interactive) master process; and the
master process in turn distributes the
data and the R commands to a cluster
of (non-interactive) slave processes
(blue arrows), to collect the results
when the slaves are done (red arrows).

The master process should just be used
to coordinate the slaves, without
performing much in the way of
computations.

SLAVE
PROCESS

SLAVE
PROCESS

SLAVE
PROCESS

SLAVE
PROCESS

MASTER
PROCESS

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Basic Usage and Functions: Independent Slave Processes

Basic Workflow:

1. load the parallel package.

library(parallel)

2. create a cluster of 4 slaves.

cl = makeCluster(4)

3. load packages in the slaves.

ignore = clusterEvalQ(cl, library(MASS))

4. work in parallel on the slaves.

rand = clusterCall(cl, runif, n = 10^4)

5. work on the results.

sapply(rand, mean)

[1] 0.499 0.499 0.499 0.506

6. stop the cluster to kill the slaves.

stopCluster(cl)

Relevant Functions:
parApply(), parSapply(), parCapply(),
parRapply(), parLapply()

Parallel functions that work like the
applied functions in base R, but
distribute the computation to the slaves.

clusterCall(), clusterEvalQ()

Functions that evaluate an arbitrary
expression or call an arbitrary function on
each slave.

clusterExport()

Copy R objects from the master to the
slaves.

parLapplyLB(), parSapplyLB(),
clusterCallB()

Same as the equivalent functions above,
but with better load balancing between
the slaves.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Different Types of Clusters

The parallel package gives you several options for creating clusters, each with
different pros and cons.

• SOCK (snow, parallel) and PSOCK (parallel, the default)

Independent slave processes that communicate with system (pipe) sockets
(PSOCK) or network sockets (SOCK). All R objects must be copied to the
slaves, but the slaves can run on different computers.

• FORK (parallel, not available on Windows)

Slave processes are initialised with shared memory, and R objects are only
copied if the slaves modify them. All slaves must run on the same
computer.

• MPI (parallel)

Slave processes are started by the MPI library, and behave in the same way
as SOCK ones. However, the MPI library provides control over slaves at a
much lower level for both execution and communicating with the master
process.

NOTE: we do not cover threads, they are supported by parallel and multicore.
Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

K-Means with Random Starts (Embarrassingly Parallel)

A classic example of parallel computing is k-means with random starts; each
initial cluster label allocation is chosen randomly and independently.

library(parallel)

cl = makeCluster(3, type = "PSOCK")

invisible(clusterEvalQ(cl, library(MASS)))

clustering =

clusterEvalQ(cl, kmeans(Boston, centers = 4, nstart = 200))

total.ss = sapply(clustering, `[[`, "tot.withinss")

best = clustering[[which.min(total.ss)]]

stopCluster(cl)

In this case no data or functions are passed between the master and the slaves;
both the MASS package and the Boston data set it contains are loaded
directly in the slaves. Each slave sends back the return value of kmeans() to
clusterEvalQ() in the master, which collects them and returns them in a list.
Finally, we pick the set of clusters with the minimum “total within-cluster sum
of squares” among them.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Nonparametric Bootstrap (Embarrassingly Parallel)

Another embarrassingly parallel method is nonparametric bootstrap:

1. we independently sample with replacement R bootstrap samples of
the size as the data;

2. we compute a statistic of interest on each bootstrap sample;

3. we compute the mean (and often the standard deviation) of the
resulting statistics.

The R code to do that (sequentially):

library(boot)

x = rexp(2, n = 10^6)

med = function(data, indices) median(data[indices])

system.time({ boot(x, med, R = 200) })
user system elapsed

15.637 0.331 15.969

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Nonparametric Bootstrap (Embarrassingly Parallel)

First, we can rework the same code to use sapply() (still sequential).

indices = replicate(200, sample(10^6, 10^6, replace = TRUE), simplify = FALSE)

system.time({ mean(sapply(indices, med, data = x)) })
user system elapsed

10.533 0.358 10.891

Then, calling parSapply() instead of sapply() gives us the corresponding
parallel implementation.

cl = makeCluster(2, type = "PSOCK")

system.time({ mean(parSapply(cl, indices, med, data = x)) })
user system elapsed

0.897 0.082 7.537

stopCluster(cl)

Note that if Tsequential ≈ 11 then Tideal ≈ 11/2 = 5.5 but Treal(2) ≈ 7.5. So
Toverhead(2) ≈ 7.5− 5.5 ≈ 2. Often they are reported as

Treal(2)

Tsequential
≈ 0.68 in which

Toverhead(2)

Tsequential
≈ 0.18.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

When Overhead Becomes Too Much

Increasing the number of slaves from 2 to 4 makes performance better even
though overhead increases as well; there is no benefit in using 8.

cl = makeCluster(4, type = "PSOCK")

system.time({ mean(parSapply(cl, indices, med, data = x)) })
user system elapsed

0.954 0.105 6.342

stopCluster(cl)

Treal(4)

Tsequential
≈ 0.5 in which

Toverhead(4)

Tsequential
≈ 0.25.

cl = makeCluster(8, type = "PSOCK")

system.time({ mean(parSapply(cl, indices, med, data = x)) })
user system elapsed

1.172 0.157 4.908

stopCluster(cl)

Treal(8)

Tsequential
≈ 0.5 in which

Toverhead(8)

Tsequential
≈ 0.375.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Investigating Overhead with the snow Package

If we re-run the same commands on a cluster created with snow, we can get a
nice plot from snow.time() and look into our parallel performance.

library(snow)

cl = snow::makeCluster(8)

timings = snow.time({ mean(snow::parSapply(cl, indices, med, data = x)) })
snow::stopCluster(cl)

0 2 4 6

Elapsed Time

N
od

e

0
1

2
3

4
5

6
7

8

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

What Went Wrong? And How to Fix It?

There seems to be two problems with our code:

• the master can copy the data to a single slave at a time, so some
slaves spend too much time waiting;

• we are copying too much data, it appears it takes about 0.5 seconds
each time which is about 8% of the total running time! The last
slave starts working after 0.5× 8 = 4 seconds out of 6.

We can address both problems by considering that:

• the indices used for sampling with replacement are independent, so
there is no reason to generate them sequentially in the master;

• the data is the same for all the slaves so we can export it explicitly
just once at the beginning.

NOTE: R objects that are passed as arguments to the function executed
on the slaves are automatically copied each time.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Way Less Overhead: Good Job!

plot(snow.time({
snow::clusterExport(cl, c("x", "med"))

snow::clusterEvalQ(cl, {
indices = replicate(25, sample(10^6, 10^6, replace = TRUE),

simplify = FALSE)

sapply(indices, med, data = x)

})
}))

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Elapsed Time

N
od

e

0
1

2
3

4
5

6
7

8

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Forward Model Selection (Coarse-Grained Parallelism)

Forward model selection is the most basic way to find which variables
we should include in a linear regression model because they improve how
well the model fits the data. If works as follows:

1. We start from a baseline, empty model (with just the intercept), and
we measure how well it fits the data with BIC (lower values
correspond to better models).

2. For as long as we can find better model:

2.1 Add each candidate regressor in turn and compute BIC for the resulting
model.

2.2 If any of those models has a lower BIC than the baseline model, use
that as a the new baseline model (and do not try to add that regressor
again).

In a real model selection procedure, we would also try to remove terms
that become redundant; we do not it here to keep the code simple. (But
you are welcome to try!)

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Forward Model Selection (Sequential)

linear = read.table("linear.txt", header = TRUE)

step = function(base.model, term, data)

BIC(lm(as.formula(paste(base.model, "+", term)), data = data))

regressors = setdiff(names(linear), "F")

base.model = "F ~ 1"

base.score = BIC(lm(F ~ 1, data = linear))

repeat {

scores = sapply(regressors, step, base.model = base.model, data = linear)

if (min(scores) >= base.score)

break

base.model = paste(base.model, "+", names(which.min(scores)))

base.score = min(scores)

regressors = setdiff(regressors, names(which.min(scores)))

if (length(regressors) == 0)

break

}#REPEAT
Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Forward Model Selection (Parallel)

cl = makeCluster(6, type = "PSOCK")

repeat {

scores = parSapply(cl, regressors, step,

base.model = base.model, data = linear)

if (min(scores) >= base.score)

break

base.model = paste(base.model, "+", names(which.min(scores)))

base.score = min(scores)

regressors = setdiff(regressors, names(which.min(scores)))

if (length(regressors) == 0)

break

}#REPEAT
stopCluster(cl)

Again, the best strategy is to base the code in one of the functions in the
apply() family and then replace it with the corresponding function in the
parApply() family.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Exploring Performance and Overhead

0.0 0.5 1.0 1.5 2.0

Elapsed Time

N
od

e

0
1

2
3

4
5

6

• We can clearly see we are needlessly copying data again and again; copy
them in the slaves at the beginning seems worthwhile.

• We can also see the parallel parts of the algorithm interleaved with the
sequential parts.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Again, With clusterExport()

step = function(base.model, term)

BIC(lm(as.formula(paste(base.model, "+", term)), data = linear))

clusterExport(cl, "linear")

repeat {

scores = parSapply(cl, regressors, step,

base.model = base.model)

if (min(scores) >= base.score)

break

base.model = paste(base.model, "+", names(which.min(scores)))

base.score = min(scores)

regressors = setdiff(regressors, names(which.min(scores)))

if (length(regressors) == 0)

break

}#REPEAT

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Sometimes The Difference is Negligible

0.0 0.5 1.0 1.5 2.0

Elapsed Time

N
od

e

0
1

2
3

4
5

6

Despite the appearances, exporting the data with clusterExport()

does not make much difference this time.

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Pro Tip: Different Functions on Different Slaves

Remember that functions are objects themselves; therefore we can pass them
to the slaves as arguments, and have each slave execute different ones. Here
we compute column means on one slave, and column standard deviations on
the other (on the same data).

cl = makeCluster(2, type = "PSOCK")

slave.id = function(id)

assign("id", value = id, envir = .GlobalEnv)

parSapply(cl, 1:2, slave.id)

[1] 1 2

calls = list(mean, sd)

clusterExport(cl, list("calls", "linear"))

clusterEvalQ(cl, sapply(linear, calls[[id]]))

[[1]]

A B C D E F G

0.998 2.028 8.009 9.025 3.505 22.051 5.011

##

[[2]]

A B C D E F G

1.00 2.00 6.36 4.52 2.00 6.22 2.00

stopCluster(cl)

Marco Scutari University of Oxford

Computational Architectures and Parallel Computing

Summary and Remarks

• Many statistical methods are based on algorithms with some (or
many) independent parts that can be computed at the same time:
we should take advantage of that with parallel computing.

• This not something you can only do on huge compute servers, all
modern desktops and laptops have at least 2-4 cores. (Be gentle to
your hardware and leave one free for the operating system to use.)

• The key point is identifying how parallelisable an algorithm is;
embarrassingly parallel algorithms are best.

• Consider the computational complexity (both in time and space) of
your algorithm: do the parts that can run in parallel take a lot of
time? Is it worthwhile?

• Investigate how much overhead you have, and try to reduce it.

• Try not to copy data around too much, and choose a sensible
number of slaves based on the size of the data and the hardware.

Marco Scutari University of Oxford

The Hadleyverse: dplyr & Co.

Marco Scutari University of Oxford

The Hadleyverse: dplyr & Co.

The Problem of Base R

The base package in R provides a large number of options for importing,
formatting and manipulating data. However, the functions that perform
such tasks have been written over many years by many different people,
resulting in inconsistent syntax (e.g. argument names and ordering),
not-so-brilliant speed (data used to be smaller) and error messages and
failure modes that are somewhat obscure. Unfortunately, these functions
are used in a lot of code and therefore cannot be changed.

To address this, some developers led by Hadley Wickham developed a
suite of package to provide faster and consistent replacements for those
functions. We will briefly cover:

• readr: importing data, with useful diagnostics;

• tidyr: reshaping data;

• magrittr and dplyr: stringing function calls using pipes.

Marco Scutari University of Oxford

The Hadleyverse: dplyr & Co.

Importing Data with readr

With the classic read.csv():

read.csv("problematic.example.csv", colClasses = c("integer", "integer"))

Error in scan(file = file, what = what, sep = sep, quote = quote, dec =

dec, : scan() expected ’an integer’, got ’a’

With read csv() from readr:

library(readr)

tbl = read_csv("problematic.example.csv", col_types = "ii")

problems(tbl)

A tibble: 2 4

row col expected actual

<int> <chr> <chr> <chr>

1 1 y an integer a

2 2 x an integer b

tbl[problems(tbl)$row,]

A tibble: 2 2

x y

<int> <int>

1 1 NA

2 NA 2

Marco Scutari University of Oxford

The Hadleyverse: dplyr & Co.

Reshaping Data with tidyr

The tidyr is designed to rearrange data when

• multiple records for the same variable in the same row (e.g values at
different times, one per column);

• one record spread over multiple rows (e.g. values for the same
individual, one per row);

• multiple variables collated in a single column.

As an example, consider stock values for 3 stocks on 10 different days.

library(tidyr)

stocks = data.frame(time = as.Date('2009-01-01') + 0:9,

X = rnorm(10, 0, 1), Y = rnorm(10, 0, 2), Z = rnorm(10, 0, 4))

head(stocks, n = 3)

time X Y Z

1 2009-01-01 1.5307 -2.1723 -0.647

2 2009-01-02 0.9559 3.2267 7.742

3 2009-01-03 0.0479 0.0713 6.893

Marco Scutari University of Oxford

The Hadleyverse: dplyr & Co.

tidyr: Rearrange Rows and Columns

• gather(): one observation per row.

single = gather(stocks, key = stock, price, -time)

head(single, n = 3)

time stock price

1 2009-01-01 X 1.5307

2 2009-01-02 X 0.9559

3 2009-01-03 X 0.0479

• spread(): one date or one stock per row.

spread(single, key = stock, price)[1:3,]

time X Y Z

1 2009-01-01 1.5307 -2.1723 -0.647

2 2009-01-02 0.9559 3.2267 7.742

3 2009-01-03 0.0479 0.0713 6.893

spread(single, key = time, price)[, 1:3]

stock 2009-01-01 2009-01-02

1 X 1.531 0.956

2 Y -2.172 3.227

3 Z -0.647 7.742

Marco Scutari University of Oxford

The Hadleyverse: dplyr & Co.

tidyr: Split and Unite Columns

• separate(): split the date variable into separate year, month and day.

split =

separate(stocks, col = time, into = c("year", "month", "day"), sep = "-")

head(split, n = 5)

year month day X Y Z

1 2009 01 01 1.5307 -2.1723 -0.647

2 2009 01 02 0.9559 3.2267 7.742

3 2009 01 03 0.0479 0.0713 6.893

4 2009 01 04 -1.1046 2.6299 1.434

5 2009 01 05 0.5390 1.9563 1.210

• unite(): merge year, month, day into a single column, separated by a /.

head(unite(split, col = date, day, month, year, sep = "/"), n = 5)

date X Y Z

1 01/01/2009 1.5307 -2.1723 -0.647

2 02/01/2009 0.9559 3.2267 7.742

3 03/01/2009 0.0479 0.0713 6.893

4 04/01/2009 -1.1046 2.6299 1.434

5 05/01/2009 0.5390 1.9563 1.210

Marco Scutari University of Oxford

The Hadleyverse: dplyr & Co.

Unravelling Complicated Commands: magrittr

The most powerful aspect of R console, compared to a graphical
interface, is that you can string commands together to obtain the results
you need. However, this can make for long and unreadable lines of code.
magrittr helps overcoming this problem by introducing the pipe
operator %>%, which takes the return value of one function (on the
left-hand side) and pass it to another function (on the right-hand side,
as a first unnamed argument). So a command like this:

mean(sqrt(log(1:10, base=2)),trim=0.1)

[1] 1.5

becomes:

library(magrittr)

1:10 %>%

log(base = 2) %>%

sqrt() %>%

mean(trim = 0.1)

[1] 1.5

Marco Scutari University of Oxford

The Hadleyverse: dplyr & Co.

magrittr and tidyr

We can combine %>% with the commands from tidyr to manipulate the
data in multiple ways without the use of temporary variables to store
intermediate results.

stocks %>%

separate(col = time, into = c("year", "month", "day")) %>%

unite(col = "day.of.year", day, month, sep = "/") %>%

head(n = 3)

year day.of.year X Y Z

1 2009 01/01 1.5307 -2.1723 -0.647

2 2009 02/01 0.9559 3.2267 7.742

3 2009 03/01 0.0479 0.0713 6.893

Note that:

• the pipe passes the R object to the right-hand function as its first
unnamed argument, which means it is matched by position;

• naming other arguments is crucial to avoid confusion;

• not all functions take the R object as their first arguments, but you
can name all previous argument in the function definition.

Marco Scutari University of Oxford

The Hadleyverse: dplyr & Co.

Slicing and Dicing the Data with dplyr

Finally, the dplyr package provides functions to complement tidyr in
organising data before you analyse them.

library(dplyr)

There are only 5 manipulation verbs you need to express any data
manipulation task; dplyr provides one function for each, with consistent
naming: select(), filter(), mutate(), summarise() and
arrange(). Furthermore, it provides functions such as left join()

and full join() to merge different data frames in various ways.

NOTE: you can string these functions together with %>% and use them
in combination with functions from tidyr; and you do not need to load
library(magrittr) because dplyr does that for you.

Marco Scutari University of Oxford

The Hadleyverse: dplyr & Co.

Select Rows and Columns

• select(): extract or remove columns.

stocks %>% select(X) %>% head(n = 3)

X

1 1.5307

2 0.9559

3 0.0479

stocks %>% select(-X) %>% head(n = 3)

time Y Z

1 2009-01-01 -2.1723 -0.647

2 2009-01-02 3.2267 7.742

3 2009-01-03 0.0713 6.893

• filter(): choose rows.

stocks %>% filter(X >= Y) %>% head(n = 3)

time X Y Z

1 2009-01-01 1.53 -2.17 -0.647

2 2009-01-09 -1.19 -1.63 -3.797

Marco Scutari University of Oxford

The Hadleyverse: dplyr & Co.

Join and Summarise

• group by() and summarise(): compute per-group summary statistics.

stocks %>% group_by(time) %>%

summarise(mean = mean(c(X, Y, Z)), sd = sd(c(X, Y, Z))) %>% head(n = 3)

A tibble: 3 3

time mean sd

<date> <dbl> <dbl>

1 2009-01-01 -0.429 1.86

2 2009-01-02 3.975 3.45

3 2009-01-03 2.337 3.95

• left join(): merge two different data frames sharing a common variable.

weekdays = data.frame(time = as.Date('2009-01-01') + 0:9,

name = c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",

"Saturday", "Sunday", "Monday", "Tuesday", "Wednesday"))

left_join(stocks, weekdays) %>% head(n = 3)

Joining, by = "time"

time X Y Z name

1 2009-01-01 1.5307 -2.1723 -0.647 Monday

2 2009-01-02 0.9559 3.2267 7.742 Tuesday

3 2009-01-03 0.0479 0.0713 6.893 Wednesday

Marco Scutari University of Oxford

Literate Programming and

Reproducible Research

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

Literate Programming and Reproducible Research

The key idea behind literate programming is to mix the source code and
documentation together, so that we can:

• extract the source code out (called tangle);

• execute the code to get the compiled results (called weave);

• easily update the documentation when we update the code, and vice
versa, to keep them in sync;

• easily produce reports that reflects the latest results from the code.

The two main reasons to engage in literate programming are:

• keep track of code and documentation/report status in a single
place;

• ensuring that research is reproducible.

This has been achieved in R with Sweave(), and more recently with the
knitr package.

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

Reproducibility Really is a Problem

(And you can easily find similar papers about economics, psychology, etc.)

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

Good Practices

Good Practices

• Manage all files in the same directory and use relative paths.

• Work in a clean R session.

• Do not work interactively: organise your code in a collection of R
functions and R scripts.

• Document which versions of R and of the R packages you are using,
e.g. with sessionInfo().

• If possible, keep all files in a version control system such as Git.

Common Problems

• The data is huge, so it is not trivial to archive it with the code.

• Performing exploratory analysis in batch mode is more time
consuming; it is almost done interactively at least at first.

• Either the data or the code are confidential, so they cannot be
stored together.

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

Using knitr with LATEX

knitr can be used to include your R code into a LATEX document; simply
put both your LATEX code and your R code together in a file with
extension Rnw. The R code should be divided in chunks enclosed
between <<>>= and @ and placed near the text describing it.

Here we show a summary of an \textit{empirical} sample from a $N(2, 1)$.

<<code-chunk-label>>=

rand = rnorm(10, mean = 2, sd = 1)

summary(rand)

@

You can produce a LATEX file from the Rnw with:

library(knitr)

knit("simple.Rnw")

or you can extract all the R code in a separate file with:

purl("simple.Rnw")

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

The Compiled Documents

The R file from purl():

--

rand = rnorm(10, mean = 2, sd = 1)

summary(rand)

The PDF file compiled from the LATEX file from knit():

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

Can You Customise knitr?

knitr provides many options that can be set either globally (for all chunks of R
code) or locally (for individual chunks). The most important are:

• cache = TRUE, autodep = TRUE: cache the output of R code, and run it
again only when that chunk of R code changes (instead of running it every
time knit is called). Dependencies between different chunks of code are
handled automatically. Useful for long-running computations.

• tidy = TRUE: reorganise code to look pretty (indentation, spacing, etc.)
in the output.

• eval = FALSE: keep the R code but not execute it. Useful for including R
code in an appendix.

• echo = FALSE: execute the R code but do not include it in the LATEX file.
Useful for the code used to generate figures; often we want to include the
figure but we do not care about the corresponding R code.

You should also be aware that knitr supports document formats other than
LATEX (notably HTML), and that it can generate both figures and tables with
reasonably good formatting.

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

A Second Example: Source

<<formatting, echo = FALSE, cache = FALSE>>=

library(knitr)

opts_chunk$set(autodep = TRUE, cache = TRUE, tidy = FALSE,

size = "scriptsize", keep.blank.line = FALSE,

out.width = '6cm', out.height='6cm', fig.align = "center")

@

We fit this very interesting model.

<<model>>=

model1 = lm(A ~ B + C, data = gaussian.test)

@

The regression coefficient are all significant.

<<summary, echo = FALSE>>=

kable(summary(model1)$coefficients)

@

And the residuals do not show any patterns.

<<diagnostics, echo = FALSE>>=

plot(fitted(model1) ~ resid(model1))

@

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

A Second Example: Output

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

You Can Use knitr in RStudio

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

Version Control Systems

A most important feature in an editor the UNDO key - a single button
that helps removing recent errors. A source code or version control
system is, among other things, a giant UNDO key spanning a whole
project (software, documentation, and data). It keeps track of every
change you make in every file in your project so that:

• you can compare the state of your project as it was at two arbitrary
points in time;

• you can work on independent changes at the same time, without
those changes conflicting from each other;

• you can always rebuild the project as it existed on a given date,
which is great for reproducibility.

This kind of information is invaluable for bug-tracking, performance,
and quality purposes. It helps a lot when both data and R code change
in the course of an analysis.

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

Debugging with Bisection

2016-08-04

2016-08-03

2016-08-02

2016-08-01

2016-08-12

2016-08-11

2016-08-10

2016-08-09

2016-08-08

2016-08-07

2016-08-05

2016-08-06

2016-07-31

2016-07-30

2016-07-29

2016-07-28

2016-07-27

2016-07-26

KNOWN BAD

KNOWN GOOD

WHEN THE
BUG WAS

INTRODUCED

A debugging technique that is specific to
version control systems is bisection. Given
a sequence of changes to a project (here
labelled by day) in which we can identify
on known good state and one known bad
state, a version control system makes it
possible to identify which change
introduced a bug by investigating all the
changes in the order they were applied.

In practice, we perform a bisection search
(which is optimal as it takes the minimum
O(log2N) possible steps) until we find two
consecutive states, the first without the
bug and the second with the bug.

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

A Popular Version Control System: Git

Git is a popular version control system, and it is widely used in science
and technology because:

• it is free software;

• it is available for all major operating systems (Windows, Linux,
OSX);

• plenty of free hosting on the web (GitHub, GitLab).

In our case, it is also important that it is integrated in RStudio.
Key steps to keep in mind:

• add one or more files to the project;

• commit the current version of the files;

• carry on your work;

• commit changes, adding a description of what has been added and
what has changed;

• in case of trouble, look at the history and compare different versions
of the same files to find where the problem is.

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

Creating a Project with Git Versioning in RStudio

1

2

3

4

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

Adding A New R File, Committing Changes

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

Visualising History

Marco Scutari University of Oxford

Literate Programming and Reproducible Research

Summary and Remarks

• Keeping your work organised is crucial to make process smoothly
and to make your results reproducible.

• Most people will not (or can not) read your R code; it is crucial to
keep your documentation and your code in sync to avoid
disseminating the wrong results.

• Tracking changes in your data, your code and your documentation
with a version control system, and keeping it all organised in a single
project is a principled way to achieve these aims.

Marco Scutari University of Oxford

	Statistical Computing: What is it? 0.5
	Algorithms, Data Structures and Computational Complexity
	Testing, Debugging, Benchmarking, Profiling Code
	Computational Architectures and Parallel Computing
	The Hadleyverse: dplyr & Co.
	Literate Programming and Reproducible Research

