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This practical sheet contains a single, assessed exercise on which you should write a report
with a soft word limit at 2000 words and a hard limit at 2500 words. Also note that you should
use the anonymous practicals ID (and not your real name) for the cover page of the report, and
you should name the PDF file you upload to WebLearn using that same ID (e.g., “P042.pdf”).

In this particular practical report it is fine to include snippets of code in the main body of the
report for the purpose of illustrating and discussing them.

Exercise : Linear Regression for Correlated Data

Consider a linear regression model of the form

y = Xβ + ε with ε ∼ N(0, sK + tIn) (1)

where y is an n × 1 vector; X is a n × p matrix (with p explanatory variables, assuming no
intercept); s, t ∈ R+; K is an n × n covariance matrix; and I is the n × n identity matrix. This
kind of model is very general and it is widely used in genetics (where individuals in the sample may
be related) and environmental sciences (where measurements are correlated in time and space).

If we write a spectral decomposition of K = UΛUT , then

sK + tIn = sUΛUT + tUUT = U(sΛ + tI)UT (2)

which we can further simplify to U(hΛ + (1− h)I)UT if we set h = s/(s+ t) ∈ [0, 1], leaving only
one tuning parameter. Hence

UTy = UTXβ + UTε with UTε ∼ N(0, (s+ t)(hλi + (1− h))) (3)

which is a weighted regression in which observations are independent with weights wi = hλi +
(1− h), i = 1, . . . , n.

1. Implement an R function to estimate the model (1) via the formulation in (3) assuming h and
K are known, without using lm(). The function should take y, X, h and K as arguments;
and it should be implemented using the best practices we discussed in the lectures (checking
the validity of the argument values, using comments, indentation, etc.). The function should
return a vector containing the estimated values for β, and it should be called lmKfit().

2. Implement a unit test checking that lmKfit() gives the correct estimates for the β. Use
lm() to produce “known good” estimates to compare against, and rmvnorm() from the
mvtnorm package to generate a random sample to run the test. The test should produce
an error if the estimates are incorrect.

3. What is the computational complexity of lmKfit()? Double-check your results for the
complexity in the sample size by simulation.
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4. Implement a function lmKhfit() that estimates h as well as β, and returns both in a list.
(Hint: you can use optimize() to do that.)

5. Implement a parallel version of lmKhfit() (say, parlmKhfit()) that estimates h by explor-
ing a dense grid of values over [0.01, 0.899]. (Values outside of this interval cause numerical
problems, so for simplicity you can disallow them in optimising for h.)

6. Which is faster, lmKhfit() or parlmKhfit()?
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Solution to Exercise

1. The function to fit the model in (1) is the lmKfit() below:

lmKfit = function(y, X, h, K) {

if (!is.numeric(y) || !is.vector(y))

stop("’y’ must be a numeric vector.")

if (!is.numeric(X) || !is.matrix(X))

stop("’X’ must be a numeric matrix.")

if (!is.numeric(h) || length(h) > 1)

stop("’h’ must be a single number.")

if (h > 1 || h < 0)

stop("’h’ must be a single number in [0, 1].")

nobs = length(y)

if (nrow(X) != nobs)

stop("’y’ and ’X’ contain different numbers of observations.")

if ((nrow(K) != ncol(K)) || (nrow(K) != nobs))

stop("’K’ must be a square matrix with ", nobs, " rows.")

# compute the spectral decomposition of K.

e = eigen(K)

# rotate both X and y.

Ut = t(e$vectors)

yrot = Ut %*% y

Xrot = Ut %*% X

# compute the weights from the eigenvalues and h.

w = 1/(h * e$values + (1 - h))

# estimate the betas using the closed-form estimator for weighted

# least squares.

Xwt = t(Xrot * w)

ywt = t(yrot * w)

XwX = Xwt %*% Xrot

Xwy = Xwt %*% yrot

beta = solve(XwX) %*% Xwy

return(as.vector(beta))

}#LMKFIT
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2. We can generate a random sample as follows:

library(mvtnorm)

n = 1000

h = 0.75

X = matrix(rnorm(5 * n), nrow = n, ncol = 5)

beta = (1:5)/5

K = diag(0.5, n) + 0.5

K[1, 2:n] = K[2:n, 1] = 0.75

epsilon = t(rmvnorm(1, sigma = h * K + (1 - h) * diag(n)))

y = as.vector(X %*% beta + epsilon)

Then the unit test can be implemented as:

estimated = lmKfit(y = y, X = X, h = h, K = K)

e = eigen(K)

Ut = t(e$vectors)

w = 1/(h * e$values + (1 - h))

reference = coef(lm(I(Ut %*% y) ~ I(Ut %*% X) - 1, weights = w))

stopifnot(all.equal(estimated, reference, check.attributes = FALSE))

Note that without check.attributes = FALSE the test fails because coef(lm()) returns
a named vector, while lmKfit() returns a vector without names.

3. The computational complexity of lmKfit() is the sum of:

• the complexity of the spectral decomposition, O(n3);

• the complexity of computing UTy, O(n2);

• the complexity of computing UTX, O(n2p);

• the complexity of fitting the weighted linear regression, O(np2).

So the total complexity is O(n3 + n2p+ np2 + n2), quadratic in the number of variables and
cubic in the number of observations. We can check that is the case empirically by calling
lmKfit() on random samples of varying size and comparing the resulting running times
with a cubic fit.
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n = 2000

h = 0.75

X = matrix(rnorm(5 * n), nrow = n, ncol = 5)

beta = (1:5)/5

K = diag(0.5, n) + 0.5

K[1, 2:n] = K[2:n, 1] = 0.75

epsilon = t(rmvnorm(1, sigma = h * K + (1 - h) * diag(n)))

y = as.vector(X %*% beta + epsilon)

size = c(20, 50, 100, 200, 500, 1000, 2000)

time = rep(0, length(size))

for (s in seq_along(size)) {

ys = y[1:size[s]]

Xs = X[1:size[s], ]

Ks = K[1:size[s], 1:size[s]]

time[s] = system.time(lmKfit(y = ys, X = Xs, h = h, K = Ks))["elapsed"]

}#FOR
plot(time ~ size)

cubic.fit = fitted(lm(time ~ size + I(size^2) + I(size^3)))

lines(y = cubic.fit, x = size, col = "red")
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4. Note that in the implementation of lmKhfit() below, both X and y are premultiplied by
UT outside of optimize() to avoid redundant computations.
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lmKhfit = function(y, X, K) {

# include the same arguments checks as in lmKfit() here.

# compute the spectral decomposition of K.

e = eigen(K)

# rotate both X and y.

Ut = t(e$vectors)

yrot = Ut %*% y

Xrot = Ut %*% X

hfit = function(h, yrot, Xrot, K, return.beta) {

# compute the weights from the eigenvalues and h.

w = 1/(h * e$values + (1 - h))

# estimate the betas usign the closed-form estimator for weighted

# least squares.

Xwt = t(Xrot * w)

ywt = t(yrot * w)

XwX = Xwt %*% Xrot

Xwy = Xwt %*% yrot

beta = solve(XwX) %*% Xwy

# count how many times the weighted linear model is fitted, saving the

# counter in the global environment.

counter.lmKhfit <<- counter.lmKhfit + 1

if (return.beta)

return(list(h = h, beta = as.vector(beta)))

else

return(sum((y - X %*% beta)^2 / w))

}#HFIT

hopt = optimize(f = hfit, interval = c(0, 1),

yrot = yrot, Xrot = Xrot, K = K, return.beta = FALSE)$minimum

# refit the model with the optimal value of h and return.

hfit(h = hopt, yrot = yrot, Xrot = Xrot, K = K, return.beta = TRUE)

}#LMKHFIT

5. The parallel implementation parlmKhfit() follows from lmKhfit().
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parlmKhfit = function(y, X, K, cluster, stepping = 1/100) {

# include the same arguments checks as in lmKfit() here.

# compute the spectral decomposition of K.

e = eigen(K)

# rotate both X and y.

Ut = t(e$vectors)

yrot = Ut %*% y

Xrot = Ut %*% X

hfit = function(h, yrot, Xrot, K, return.beta = FALSE) {

# compute the weights from the eigenvalues and h.

w = 1/(h * e$values + (1 - h))

# estimate the betas usign the closed-form estimator for weighted

# least squares.

Xwt = t(Xrot * w)

ywt = t(yrot * w)

XwX = Xwt %*% Xrot

Xwy = Xwt %*% yrot

beta = solve(XwX) %*% Xwy

if (return.beta)

return(list(h = h, beta = as.vector(beta)))

else

return(sum((y - X %*% beta)^2 / w))

}#HFIT

hgrid = seq(from = 0.01, to = 0.899, by = stepping)

rss = parSapply(cluster, hgrid, hfit, yrot = yrot, Xrot = Xrot, K = K)

hopt = hgrid[which.min(structure(rss, names = hgrid))]

# count how many times the weighted linear model is fitted, saving the

# counter in the global environment.

counter.parlmKhfit <<- length(hgrid)

# refit the model with the optimal value of h and return.

hfit(h = hopt, yrot = yrot, Xrot = Xrot, K = K, return.beta = TRUE)

}#PARLMKHFIT

We can check that they give the same solution using some of the random data we have
previously generated.
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library(parallel)

cl = makeCluster(2)

counter.lmKhfit = counter.parlmKhfit = 0

parlmKhfit(y = y[1:500], X = X[1:500, ], K = K[1:500, 1:500],

cluster = cl, stepping = 1/200)

## $h

## [1] 0.815

##

## $beta

## [1] 0.155 0.425 0.583 0.836 0.978

lmKhfit(y = y[1:500], X = X[1:500, ], K = K[1:500, 1:500])

## $h

## [1] 0.814

##

## $beta

## [1] 0.155 0.425 0.583 0.836 0.978

6. lmKhfit() fits fewer weighted linear regressions than parlmKhfit(), because
optimize() essentially searches by bisection:

counter.lmKhfit

## [1] 14

counter.parlmKhfit

## [1] 178

So, for parlmKhfit() to be faster it must be run over more than 178/14 ≈ 13 cores. In
that case each slave process fits fewer than 14 weighted regressions, and assuming overhead
is negligible parlmKhfit() will be faster than lmKhfit().
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