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Course Information

Instructors:

• Marco Scutari (scutari@idsia.ch) for the Uncertainty Reasoning
module;

• Dario Azzimonti (dario.azzimonti@idsia.ch) for the Data Mining
module.

Teaching assistant: Rafael Cabañas (rcabanas@idsia.ch)
Every week on Thursday:
12:45–14:15 Lecture
14:15–14:30 Coffee Break
14:40–15:15 Lecture
15:15–15:30 Coffee Break
15:30–17:00 Problem class (with Rafael)
17:00–18:00 Individual work with tutoring, review, more solved exercises (optional).

IMPORTANT: let Rafael and Marco/Dario know in advance if you are
planning to attend the hours in the afternoon, especially if you would like
to have active tutoring.
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Examinations

The final grade is determined by:
• Themid-term written test (42%) in week 10

• on the material from the “Uncertain Reasoning” module;
• problems, questions about theory.

• The final written test (25%) in late January
• on the material from the “Data Mining” module;
• problems, questions about theory.

• The first homework assignment (21%)
• hands-onmodelling using the techniques learned in the “Uncertain

Reasoning” module;
• starts mid-October, short report to be submitted in 6 weeks.

• The second homework assignment (12%)
• hands-on data analysis using the techniques learned in the “Data

Mining” module;
• starts mid-December, short report to be submitted in 4 weeks.

Homework assignments must be submitted as PDFs by email.
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Regulations

• Attendance is mandatory.

• Written tests are mandatory as well:
• there is no provision to retake the test,
• the written test will be replaced by an oral examination on Uncertain

Reasoning, Data Mining or both;
• except if you are undertaking compulsory military service.

• There is no provision to retake the mid-term test if you fail.

• Use of laptop computers is encouraged to try stuff as it is being
explained and keep lectures interactive.

• Please check your @supsi.ch email address at least daily as it will be
used for personal communications.
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Overview

module: Uncertain Reasoning

• Focus is on Bayesian networks.

• What are they?

• Why do we need them?

• Are they popular, are they used in practice?

• All programming will be in R.

module: Data mining

• Focus is on Pattern classification.

• What is it?

• Why do we need it?

• Is it popular, used in practice?

• All programming will be in Python.

Why data mining together with Bayesian networks?
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Modules and Lectures Plan

Week 1 Uncertain Reasoning Probability Fundamentals
Brief Introduction to R

Week 2 Uncertain Reasoning Introduction to Machine Learning
Week 3 Uncertain Reasoning Introduction to Bayesian Networks
Week 4 Uncertain Reasoning Constructing a Bayesian Network
Week 5 Uncertain Reasoning
Week 6 Uncertain Reasoning
Week 7 Uncertain Reasoning Inference
Week 8 Uncertain Reasoning
Week 9 Uncertain Reasoning Learning the Parameters
Week 10 Uncertain Reasoning Mid-TermWritten Test

Week 11 Data Mining Introduction to Classification
Decision Trees

Week 12 Data Mining Model Evaluation
Week 13 Data Mining Cross-Validation, 𝑘-Nearest Neighbours
Week 14 Data Mining Naïve Bayes, Ensemble Methods Basics
Week 15 Data Mining Advanced Topics

(The topic/week allocation is very tentative!)
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Reference Material

This is the reference textbook for
Bayesian networks, from yours
truly. It includes plenty of
examples and code, going beyond
the content of this module.

Introductory material on R
including worksheets are available
to work on in your own time
courtesy of the “Statistical
Programming” course I used to
teach.
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More Material on Bayesian Networks
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Probability Fundamentals



Reasoning under Uncertainty

Reasoning under uncertainty means making rational decisions even
when there is not enough information to prove that an action will work.

1. We have a set of events that may or may not happen and that are
related to some phenomenon we are trying to model. (Will it rain
tonight?)

2. We assign probabilities to those events, putting into numbers your
knowledge. (It is 75% likely to rain tonight.)

3. We use those probabilities to answer any questions wemay have on
that phenomenon and to make a decision to take some action (or
not) depending on the answer. (I should take an umbrella!)

But what is a probability?
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Frequentist Probability

This is the classic definition from the 18th-19th century: probability is
the relative frequency with which an event occurs over a large number of
trials.

Gauss (1777–1855) Laplace (1749–1827) Bernoulli (1655–1705)
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Frequentist Probability: a Polling Example

What is the probability that someone in the world reads books “every
day or most days”?
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Frequentist Probability: a Polling Example

The frequentist answer from the GfK poll is

P(reads every day or onmost days) =
number of people who read every day or onmost days

number of polled people

which gives

P(reads every day or onmost days) =
6600
22000

= 0.30

with the numbers in the previous slide.

If the number of people in the poll is large enough, we can take the
probability to be a good approximation of the probability that someone
reads books “every day or most days”.
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Polling in R

1. We create a vector with the four reading habits covered in the poll.
reading.habits =
c("every day or most days", "at least once a week",
"at least once a month", "less than once a month")

2. We sample 22000 people.
poll = sample(reading.habits, size = 22000,

prob = c(0.30, 0.29, 0.17, 0.24), replace = TRUE)
head(poll)

[1] "at least once a month" "at least once a month"
[3] "every day or most days" "at least once a month"
[5] "less than once a month" "at least once a week"
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Polling in R

3. We compute howmany people in the poll have each specific reading
habit (the absolute frequencies).
table(poll)

poll
at least once a month at least once a week

3691 6320
every day or most days less than once a month

6671 5318

4. We compute the corresponding relative frequencies.
table(poll) / sum(table(poll))

poll
at least once a month at least once a week

0.168 0.287
every day or most days less than once a month

0.303 0.242
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Polling: Large Enough?

Howmany people should be polled to get an accurate probability? The
larger the better! Ideally, we would ask every person in the world and get
the exact value, but we can get pretty close with many fewer people than
that.

sample.size = seq(from = 100, to = 25000, by = 100)
probability = numeric(length(sample.size))
for (i in seq_along(sample.size)) {

poll = sample(reading.habits, size = sample.size[i],
prob = c(0.30, 0.29, 0.17, 0.24), replace = TRUE)

probability[i] = prop.table(table(poll))["every day or most days"]

}#FOR
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Polling: Large Enough?

par(mar = c(5, 5, 0, 0))
plot(probability ~ sample.size, pch = 19, col = "grey")
abline(h = 0.30 + c(-0.01, 0, +0.01), col = 2, lwd = c(1, 2, 1),
lty = c(2, 1, 2))
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Subjective Probability

This is a more modern definition from the 20th century: probability is a
measure of the degree of belief of an individual assessing a particular
phenomenon.

De Finetti (1906–1985) Ramsey (1903–1930)
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Subjective Probability and Bayesian Statistics

This idea that probability is a measure of our belief in an event
happening is crucial to Bayesian statistics andmodern data analysis.
Bayesian statistics is founded on the idea that we update our beliefs as
we observe the phenomenon we are modelling.

1. We have some belief about the probability of some events (our prior
probabilities).

2. We observe some events, we do not observe others (our evidence).
3. We update our beliefs to incorporate the new evidence we have

observed (our posterior probabilities)

In other words, prior + evidence = posterior.
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Polling, Revisited

Switzerland is not listed in the GfK poll (shame!), so we decide to run our
own poll of Swiss residents to find out the probability of people reading
“every day or most days”. Before we run the poll, we expect that the
attitudes toward reading should be similar to those in Germany, France
and Italy.

Hence our prior probabilities are:

Germany France Italy Average

“every day or most days” 0.25 0.27 0.30 0.2733
“at least once a week” 0.25 0.21 0.26 0.2400
“at least once a month” 0.18 0.19 0.19 0.1867
“less than once a month” 0.32 0.33 0.25 0.2300
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Polling, Revisited in R

1. We store the prior probabilities computed from 7500 people
interviewed in Germany, France and Italy in the GfK poll.
prior = c("every day or most days" = 0.2733,

"at least once a week" = 0.24,
"at least once a month" = 0.1867,
"less than once a month" = 0.23)

prior
every day or most days at least once a week

0.273 0.240
at least once a month less than once a month

0.187 0.230

2. We run our poll over 15000 Swiss residents.
evidence = c("every day or most days" = 4500,

"at least once a week" = 3750,
"at least once a month" = 4500,
"less than once a month" = 2250)

sum(evidence)
[1] 15000
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Polling, Revisited in R

3. We compute the probabilities from the poll using their frequentist
estimates.
prop.table(evidence)

every day or most days at least once a week
0.30 0.25

at least once a month less than once a month
0.30 0.15

4. We combine the prior with the evidence, weighting them by the size of
the respective polls, to obtain the posterior probabilities.
w = sum(evidence) / (sum(evidence) + sum(table(poll)))
posterior = w * prior + (1 - w) * prop.table(evidence)
posterior

every day or most days at least once a week
0.290 0.246

at least once a month less than once a month
0.258 0.180
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Evidence versus Prior: Strong Enough?

Intuitively, we would like that the more evidence we have the less our
prior beliefs should matter: the more we directly observe a
phenomenon, the less our previous expectations matter.

prior posterior evidence

“every day or most days” 0.273 0.290 0.30
“at least once a week” 0.240 0.246 0.25
“at least once a month” 0.187 0.258 0.30
“less than once a month” 0.230 0.180 0.15

Hence, the larger our Swiss poll, the larger the weight w and the more the
posterior will shift from the prior to the frequentist estimate. At some
point we gather enough evidence that the posterior is no longer relevant
at all.
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Running Larger and Larger Polls

swiss.probabilities = prop.table(evidence)
poll.size = c(10, 20, 50, 100, 200, 500, 1000, 2000, 5000,

10000, 20000, 50000, 100000, 8 * 10^6)
posterior = numeric(length(poll.size))

for (i in seq_along(poll.size)) {

# run the poll.
poll = sample(reading.habits, size = poll.size[i],

prob = swiss.probabilities, replace = TRUE)

# compute the frequentist probabilities from the evidence.
evidence = table(poll)

# compute the weight.
w = 7500 / (7500 + poll.size[i])

# combine prior and evidence into the posterior using the weight.
posterior[i] = w * prior["every day or most days"] +

(1 - w) * prop.table(evidence)["every day or most days"]

}#FOR
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Moving Away from the Prior
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Probability: Information and Uncertainty

Onemore take on probability is that it encodes how uncertain we are
about whether an event will happen or not. If we had perfect knowledge
(in a “God is all-knowing” sense) of the phenomenon we are modelling,
for any specific person we could say

P(“reads every day or most days”) = 0 or = 1;

but we do not know each Swiss resident personally, so we do not have
enough information to tell for sure which reading habits that person has.

On the other hand, if we have no information at all we may say that as far
as we know all reading habits are equally likely:

P(“reads every day or most days”) =
P(“at least once a week”) = P(“at least once a month”) =

P(“less than once a month”) = 0.25
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Uncertainty and Entropy

The relationship between probability, information
and uncertainty is the core of information theory
and is centred on the entropy function:

H(𝐸1, 𝐸2,…) = −P(𝐸1) log P(𝐸1)
− P(𝐸2) log P(𝐸2) − …

which is designed to: Shannon
(1916–2001)

• be zero when there is no uncertainty;

• take its maximum value when there is maximum uncertainty, that is,
when all events are equally probable;

• to be always positive.
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Uncertainty in Poll Results

• No uncertainty: everybody has the same habits, say
P(“reads at least once a week”) = 1.

H(Poll) = −0 log 0 − 1 log 1 − 0 log 0 − 0 log 0 = 0

• Maximum uncertainty: all reading habits are equally probable.

H(Poll) = −0.25 log 0.25 × 4 = 1.3863

• Somewhere in between: the results of the Swiss poll.

H(Poll) = −0.30 log 0.30 − 0.25 log 0.25
− 0.30 log 0.30 − 0.15 log 0.15 = 1.3535
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Subjective Probability and Uncertainty

This association between probability and uncertainty is useful in
choosing the prior distribution: since we have yet to observe the
phenomenon we are modelling, we necessarily have an imperfect
knowledge of what is going to happen.

In the worst case, we can choose the non-informative prior which assigns
the same probability to every event (that is, every reading habit has
probability 0.25). The downside is that it will take a much larger sample
(that is, polling more people) to get the same posterior probabilities than
with an informative prior (in which probabilities are closer to 0 and 1).
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Informative vs Non-Informative Prior

prior = c("every day or most days" = 0.25,
"at least once a week" = 0.25,
"at least once a month" = 0.25,
"less than once a month" = 0.25)

posterior2 = numeric(length(poll.size))

for (i in seq_along(poll.size)) {

# run the poll.
poll = sample(reading.habits, size = poll.size[i],

prob = swiss.probabilities, replace = TRUE)

# compute the frequentist probabilities from the evidence.
evidence = table(poll)

# compute the weight.
w = 7500 / (7500 + poll.size[i])

# combine prior and evidence into the posterior using the weight.
posterior2[i] = w * prior["every day or most days"] +

(1 - w) * prop.table(evidence)["every day or most days"]

}#FOR
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Moving Away from the Prior
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Probability and Random Variables

A random variable𝑋 is a function that:

• starting from a sample space 𝑆 of possible outcomes of a random
phenomenon;

• it considers an event𝐸 that is a subset of the sample space;
• and assigns a probability to it.

In the GfK poll:

• the sample space is the set of the reading habits: “every day or most
days”, “at least once a week”, “at least once a month”, “less than
once a month”;

• the event is the reading habit of a Swiss resident;
• the function that assigns the probabilities is

P(𝑋) =

⎧{{
⎨{{⎩

0.30 if reading “every day or most days”
0.25 if reading “at least once a week”
0.30 if reading “at least once a month”
0.15 if reading “less than once a month”

.
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Basic Probability Axioms

Notation: by P(𝐸)wemean P(𝑋 = 𝐸).

Mathematical notation Meaning

P(𝑆) = 1 All possibleevents in thesample space
combined have a probability of 1.

P(𝐸) ∈ [0, 1] Each event has a probability between
0 and 1 (included).

P(𝐸1∪𝐸2) = P(𝐸1)+P(𝐸2)
if𝐸1 ∩ 𝐸2 = ∅

Non-overlapping events have inde-
pendent probabilities.

P(𝐸1∪𝐸2) = P(𝐸1)+P(𝐸2)
−P(𝐸1 ∩𝐸2) if𝐸1 ∩𝐸2 ≠ ∅

Overlapping events share common
probability, which should be taken
into account.
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Basic Probability Axiom #1

P(𝑆) = P (⋃11
𝑖=1 𝐸𝑖) = 1.
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Basic Probability Axiom #2

any P(𝐸𝑖) ∈ [0, 1] because P(𝐸𝑖) < 0would make it
more-than-impossible, and because P(𝐸𝑖) ⩽ P(𝑆) = 1.
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Basic Probability Axiom #3

P(𝐸2 ∪ 𝐸6) = P(𝐸2) + P(𝐸6) if𝐸2 ∩ 𝐸6 = ∅.
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Basic Probability Axiom #4

P(𝐸9 ∪𝐸10) = P(𝐸9) + P(𝐸10) − P(𝐸9 ∩𝐸10) if𝐸1 ∩𝐸2 ≠ ∅, because
with∪we are asking about the probability of either𝐸9 or𝐸10; if both can

happen we count the probability𝐸9 ∩ 𝐸10 twice.
28



Conditional Probabilities

Following up from axioms #3 and #4, we can define the concept of
conditional probability: the probability of an event happening in a
particular context. The notation for two events is

P(𝐸1 ∣ 𝐸2) =
P(𝐸1 ∩ 𝐸2)

P(𝐸2)

which can be read as “given that𝐸2 happened, what about the
probability of𝐸1?”. The notation is the same for random variables:

P(𝑋1 ∣ 𝑋2) =
P(𝑋1 ∩𝑋2)

P(𝑋2)

which means

P(𝑋1 = 𝐸𝑖 ∣ 𝑋2 = 𝐸𝑗) =
P(𝑋1 = 𝐸𝑖 ∩𝑋2 = 𝐸𝑗)

P(𝑋2 = 𝐸𝑗)

for any event𝐸𝑖 for𝑋1 and any event𝐸𝑗 for𝑋2. 29



More Conditional Probabilities

If we flip the definition of conditional probability around, we get

P(𝑋1 ∩𝑋2) = P(𝑋1 ∣ 𝑋2)P(𝑋2)

which is commonly written as

P(𝑋1, 𝑋2) = P(𝑋1 ∣ 𝑋2)P(𝑋2)

meaning that the joint probability of𝑋1 and𝑋2 is equal to the
probability of (some event for)𝑋1 given (another event for)𝑋2 and the
probability of (the same event) for𝑋2.

For more than two variables, we can extend the formula to

P(𝑋1, 𝑋2, 𝑋3) = P(𝑋1 ∣ 𝑋2, 𝑋3)P(𝑋2, 𝑋3)
= P(𝑋1 ∣ 𝑋2, 𝑋3)P(𝑋2 ∣ 𝑋3)P(𝑋3).
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Joint and Conditional Probabilities: An Example

In 1950 Doll and Hill investigated the link between smoking and lung
cancer with data from 20 hospitals in London. For each of the 709
patients admitted, they recorded the smoking behaviour of a non-cancer
patient at the same hospital of the same gender and within the same
5-year grouping on age.

counts = matrix(c(688, 21, 650, 59), nrow = 2, ncol = 2,
dimnames = list("Smoker" = c("yes", "no"),

"Lung Cancer" = c("Case", "Control")))
counts

Lung Cancer
Smoker Case Control

yes 688 650
no 21 59

(A smoker was defined as a person who had smoked at least one
cigarette a day for at least a year.)
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From Counts to Joint Probabilities

Firstly, we can estimate the joint probabilities of Lung Cancer and
Smoker in a frequentist way using the relative frequencies.

joint.probs = prop.table(counts)
joint.probs

Lung Cancer
Smoker Case Control

yes 0.4852 0.4584
no 0.0148 0.0416

This is how we compute themmanually:

Smoker Lung Cancer Count divided by Probability

yes Case 688 / 1418 = 0.485
no Case 21 / 1418 = 0.015
yes Control 650 / 1418 = 0.458
no Control 59 / 1418 = 0.042
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From Joint to Conditional Probabilities

The conditional probabilities of Lung Cancer given Smoker are
computed by normalising the rows of joint.probs .
conditional.probs = prop.table(joint.probs, margin = 1)
conditional.probs

Lung Cancer
Smoker Case Control

yes 0.514 0.486
no 0.263 0.738

Manually:

P(Lung Cancer = Case ∣ Smoker = yes) = 0.485/(0.485 + 0.458) = 0.514
P(Lung Cancer = Control ∣ Smoker = yes) = 0.458/(0.458 + 0.458) = 0.486

P(Lung Cancer = Case ∣ Smoker = no) = 0.015/(0.015 + 0.042) = 0.262
P(Lung Cancer = Control ∣ Smoker = no) = 0.042/(0.042 + 0.042) = 0.738

This is the probability of having lung cancer (or not) given that the
patient was a smoker (or not).
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From Joint to Conditional Probabilities

The conditional probabilities of Smoker given Lung Cancer are
computed by normalising the columns of joint.probs .
conditional.probs = prop.table(joint.probs, margin = 2)
conditional.probs

Lung Cancer
Smoker Case Control

yes 0.9704 0.9168
no 0.0296 0.0832

Manually:

P(Smoker = yes ∣ Lung Cancer = Case) = 0.485/(0.485 + 0.015) = 0.97
P(Smoker = no ∣ Lung Cancer = Case) = 0.015/(0.485 + 0.015) = 0.03

P(Smoker = yes ∣ Lung Cancer = Control) = 0.458/(0.458 + 0.042) = 0.917
P(Smoker = no ∣ Lung Cancer = Control) = 0.042/(0.458 + 0.042) = 0.083

This is the probability of being a smoker (or not) given that the patient
has been admitted for lung cancer (or not).
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Marginals and Probability Tables

As expected, conditional probabilities sum up to 1 along the columns
(that is, the conditioning variable):

colSums(conditional.probs)
Case Control

1 1

If we write down the notation

P(Smoker = yes ∣ Lung Cancer = Case)+
P(Smoker = no ∣ Lung Cancer = Case) =

P(Smoker = yes ∪ no ∣ Lung Cancer = Case)

because of axiom #2 (yes and no are disjoint), and

P(Smoker = yes ∪ no ∣ Lung Cancer = Case) = 1

because of axiom #1 (yes and no make up the whole sample space).
35



Marginals and Probability Tables

If we sum up on the rows or on the columns of joint.probs we get the
marginal probabilities for Lung Cancer and Smoker .

marginal.smoker = margin.table(joint.probs, margin = 1)
marginal.smoker

Smoker
yes no

0.9436 0.0564
marginal.lung.cancer = margin.table(joint.probs, margin = 2)
marginal.lung.cancer

Lung Cancer
Case Control
0.5 0.5

Manually:

P(Smoker = yes) = P(Smoker = yes, Lung Cancer = Case)+
P(Smoker = yes, Lung Cancer = Control) = 0.485 + 0.458 = 0.944

P(Smoker = no) = P(Smoker = no, Lung Cancer = Case)+
P(Smoker = no, Lung Cancer = Control) = 0.015 + 0.042 = 0.056
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Marginals and Probability Tables

If we write down the notation

P(Smoker = yes, Lung Cancer = Case)+
P(Smoker = yes, Lung Cancer = Control),

because of axiom #2 (Case and Control are disjoint) we have that

P(Smoker = yes, Lung Cancer = Case)+
P(Smoker = yes, Lung Cancer = Control) =

P(Smoker = yes, Lung Cancer = Case ∪ Control),

and because of axiom #1 (Case and Control make up the whole sample
space)

P(Smoker = yes, Lung Cancer = Case ∪ Control) = P(Smoker = yes)
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Marginals, Conditional, Joint Probabilities

This works the other way round as well: we can compute joint
probabilities frommarginal and conditional probabilities.

matrix.with.marginals = matrix(rep(marginal.lung.cancer, 2), ncol = 2)
recomputed.joint.probs = conditional.probs * matrix.with.marginals
recomputed.joint.probs

Lung Cancer
Smoker Case Control

yes 0.4852 0.4584
no 0.0148 0.0416

all.equal(joint.probs, recomputed.joint.probs)
[1] TRUE

Manually:

P(Smoker = yes, Lung Cancer = Case)
= P(Smoker = yes ∣ Lung Cancer = Case)P(Lung Cancer = Case)
= 0.97 × 0.5 = 0.485
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The Chain Rule

The general case of this formula is called the chain rule, in which we start
with

P(𝑋1,… ,𝑋𝑁) = P(𝑋1 ∣ 𝑋2,… ,𝑋𝑁)P(𝑋2,… ,𝑋𝑁)

and then we follow on saying

P(𝑋2,… ,𝑋𝑁) = P(𝑋2 ∣ 𝑋3,… ,𝑋𝑁)P(𝑋3,… ,𝑋𝑁)

ans so on and so forth to get

P(𝑋1,… ,𝑋𝑁) = P(𝑋1 ∣ 𝑋2,… ,𝑋𝑁)P(𝑋2 ∣ 𝑋3,… ,𝑋𝑁)×
P(𝑋3 ∣ 𝑋4,… ,𝑋𝑁) × …× P(𝑋𝑁−1 ∣ 𝑋𝑁)P(𝑋𝑛)

for any number𝑁 of variables.
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Bayes' Rule

Another fundamental variation on the use of conditional probabilities:
starting from

P(𝑋1 ∣ 𝑋2) =
P(𝑋1, 𝑋2)

P(𝑋2)
we note that

P(𝑋1, 𝑋2) = P(𝑋2 ∣ 𝑋1)P(𝑋1) as well as P(𝑋1 ∣ 𝑋2)P(𝑋2)

and if we substitute on the numerator you can write

P(𝑋1 ∣ 𝑋2) =
P(𝑋2 ∣ 𝑋1)P(𝑋1)

P(𝑋2)

which is known as Bayes’ rule or Bayes’ theorem.
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Conditioning and Independence

Two events are independent if the occurrence of one does not affect the
occurrence of the other:

P(𝐸1 ∩ 𝐸2) = P(𝐸1)P(𝐸2);

and two random variables are independent if the respective events are
independent

P(𝑋1 = 𝐸1 ∩𝑋2 = 𝐸2) = P(𝑋1 = 𝐸1)P(𝑋2 = 𝐸2) for any𝐸1, 𝐸2.

Or, in short notation, P(𝑋1, 𝑋2) = P(𝑋1)P(𝑋2).
But we also know that P(𝑋1, 𝑋2) = P(𝑋1 ∣ 𝑋2)P(𝑋2), so if𝑋1 and𝑋2
are independent

P(𝑋1 ∣ 𝑋2)����P(𝑋2) = P(𝑋1)����P(𝑋2) giving P(𝑋1 ∣ 𝑋2) = P(𝑋1)

which makes sense because the conditioning variable does not tell us
anything about the conditioned variable.
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Conditional Independence

The concept of independence carries over to conditional probabilities; it
just means that the occurrence of one event does not affect the
occurrence of the other in the particular context given by the
conditioning event:

P(𝐸1 ∩ 𝐸2 ∣ 𝐸3) = P(𝐸1 ∣ 𝐸3)P(𝐸2 ∣ 𝐸3).

For random variables, this gives conditional independence as

P(𝑋1, 𝑋2 ∣ 𝑋3) = P(𝑋1 ∣ 𝑋3)P(𝑋2 ∣ 𝑋3);

if there are no conditioning variables (as in the previous slides) we often
talk about marginal independence for clarity.
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An Example: Radio vs Chemotherapy at Two Clinics

Consider now another example: we are comparing the effectiveness of
radiotherapy and chemotherapy over two different clinics.

therapy = array(c(18, 12, 12, 8, 2, 8, 8, 32), dim = c(2, 2, 2),
dimnames = list(Therapy = c("Radio", "Chemo"),

Response = c("Success", "Failure"),
Clinic = c("A", "B")))

therapy
, , Clinic = A

Response
Therapy Success Failure
Radio 18 12
Chemo 12 8

, , Clinic = B

Response
Therapy Success Failure
Radio 2 8
Chemo 8 32
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An Example: Radio vs Chemotherapy at Two Clinics

First we need to transform a table of counts in a table of joint
probabilities of Therapy , Response and Clinic .

therapy = prop.table(therapy)
therapy

, , Clinic = A

Response
Therapy Success Failure
Radio 0.18 0.12
Chemo 0.12 0.08

, , Clinic = B

Response
Therapy Success Failure
Radio 0.02 0.08
Chemo 0.08 0.32
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Conditional Independence: at Clinic A

Let’s start by looking at clinic A; if one of radiotherapy and chemotherapy
is better than the other then Response should be dependent on Therapy
conditional on Clinic = A .

conditional.A = prop.table(therapy[, , Clinic = "A"])
conditional.A

Response
Therapy Success Failure
Radio 0.36 0.24
Chemo 0.24 0.16

marginal.therapy = margin.table(conditional.A, margin = 1)
marginal.response = margin.table(conditional.A, margin = 2)
independent.A = prop.table(marginal.therapy %*% t(marginal.response))
independent.A

Response
Therapy Success Failure
Radio 0.36 0.24
Chemo 0.24 0.16

all.equal(conditional.A, independent.A)
[1] TRUE
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Conditional Independence: at Clinic A

Manually, we first compute the marginal probabilities in
marginal.therapy and marginal.response .

P(Therapy = Radio ∣ Clinic = A)
= P(Therapy = Radio, Response = Success ∣ Clinic = A)+

P(Therapy = Radio, Response = Failure ∣ Clinic = A) = 0.36 + 0.24 = 0.6
P(Therapy = Chemo ∣ Clinic = A)

= P(Therapy = Chemo, Response = Success ∣ Clinic = A)+
P(Therapy = Chemo, Response = Failure ∣ Clinic = A) = 0.24 + 0.16 = 0.4

P(Response = Success ∣ Clinic = A)
= P(Response = Success, Therapy = Radio ∣ Clinic = A)+

P(Response = Success, Therapy = Chemo ∣ Clinic = A) = 0.36 + 0.24 = 0.6
P(Response = Failure ∣ Clinic = A)

= P(Response = Failure, Therapy = Radio ∣ Clinic = A)+
P(Response = Failure, Therapy = Chemo ∣ Clinic = A) = 0.24 + 0.16 = 0.4
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Conditional Independence: at Clinic A

Then we construct P(Therapy, Response ∣ Clinic = A) as the product
of the marginal probabilities P(Therapy ∣ Clinic = A) and
P(Response ∣ Clinic = A) assuming they are independent.

Success Failure

Radio 0.6 × 0.6 = 0.36 0.6 × 0.4 = 0.24
Chemo 0.4 × 0.6 = 0.24 0.4 × 0.4 = 0.16

These probabilities are identical to those in conditional.A ; hence we
conclude Therapy and Response are conditionally independent given
Clinic = A .
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Conditional Independence: at Clinic B

The same turns out to be true given Clinic = B .

conditional.B = prop.table(therapy[, , Clinic = "B"])
conditional.B

Response
Therapy Success Failure
Radio 0.04 0.16
Chemo 0.16 0.64

marginal.therapy = margin.table(conditional.B, margin = 1)
marginal.response = margin.table(conditional.B, margin = 2)
independent.B = prop.table(marginal.therapy %*% t(marginal.response))
independent.B

Response
Therapy Success Failure
Radio 0.04 0.16
Chemo 0.16 0.64

all.equal(conditional.B, independent.B)
[1] TRUE
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Marginal Independence: Lumping Clinics Together

What do we find if we lump clinics A and B together, and look just at
Therapy and Response?

marginal.AB = margin.table(therapy, margin = 1:2)
marginal.AB

Response
Therapy Success Failure
Radio 0.2 0.2
Chemo 0.2 0.4

marginal.therapy = margin.table(marginal.AB, margin = 1)
marginal.response = margin.table(marginal.AB, margin = 2)
independent.AB = prop.table(marginal.therapy %*% t(marginal.response))
independent.AB

Response
Therapy Success Failure
Radio 0.16 0.24
Chemo 0.24 0.36

all.equal(marginal.AB, independent.AB)
[1] "Mean relative difference: 0.16"
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Marginal Independence: Lumping Clinics Together

Manually, we first compute the probabilities in marginal.AB .

P(Therapy = Radio, Response = Success)
= P(Therapy = Radio, Response = Success, Clinic = A)+

P(Therapy = Radio, Response = Success, Clinic = B) = 0.18 + 0.02 = 0.2
P(Therapy = Radio, Response = Failure)

= P(Therapy = Radio, Response = Failure, Clinic = A)+
P(Therapy = Radio, Response = Failure, Clinic = B) = 0.12 + 0.08 = 0.2

P(Therapy = Chemo, Response = Success)
= P(Therapy = Chemo, Response = Success, Clinic = A)+

P(Therapy = Chemo, Response = Success, Clinic = B) = 0.12 + 0.08 = 0.2
P(Therapy = Chemo, Response = Failure)

= P(Therapy = Chemo, Response = Failure, Clinic = A)+
P(Therapy = Chemo, Response = Failure, Clinic = B) = 0.08 + 0.32 = 0.4

These probabilities are at the same timemarginal with respect to Clinic
(which we are removing) and joint for Therapy and Response (which we
are measuring together).
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Marginal Independence: Lumping Clinics Together

From the probabilities in marginal.AB , we can then compute the
marginal probabilities for Therapy and Response ;

P(Therapy = Radio) = 0.2 + 0.2 = 0.4
P(Therapy = Chemo) = 0.2 + 0.4 = 0.6
P(Response = Success) = 0.2 + 0.2 = 0.4
P(Response = Failure) = 0.4 + 0.2 = 0.6

and from themarginal probabilities we can compute the table of their
products to get the joint probabilities under the assumption of
independence.

Success Failure

Radio 0.4 × 0.4 = 0.16 0.4 × 0.6 = 0.24
Chemo 0.6 × 0.4 = 0.24 0.6 × 0.6 = 0.36
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Marginal vs Conditional Independence

How can we interpret this difference?

1. Response is independent from Therapy in clinic A;

2. Response is independent from Therapy in clinic B;

3. Response is dependent from Therapy overall;

4. this suggests that: Response may be different in the two clinics?

5. or maybe: different Therapy are administered in differently in the
two clinics?

6. or maybe: patients are different between the two clinics?

What we learned: conditional independence does not imply marginal
independence; or vice versa for that matter.
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Possible Explanations?

The probability of having Response = Success is higher at clinic A (odds
are 0.3/0.2 = 1.5 vs 0.1/0.4 = 0.25 for clinic B).

margin.table(therapy, margin = c(2, 3))
Clinic

Response A B
Success 0.3 0.1
Failure 0.2 0.4

But Therapy are also administered in different proportions in the two
clinics; so if patients are different, or doctors have different skills, that
may explain the marginal dependence.

margin.table(therapy, margin = c(1, 3))
Clinic

Therapy A B
Radio 0.3 0.1
Chemo 0.2 0.4
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Probability Calculus: a Summary

• Different interpretations of probability:
• frequentist;

• subjective;

• information.

• Basic probability axioms.

• Joint, marginal and conditional probability.

• Marginal and conditional independence.

• Chain rule.

• Bayes’ rule.
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R Programming: a Summary

• sample() for random sampling.

• table() for counting and creating tables.

• matrix() and array() for 2D and higher-dimensional arrays.

• prop.table() to transform counts into relative frequencies.

• margin.table() to sum up array elements over one or more
dimensions.

• rowSums() and colSums() as special cases to sum up over rows and
columns in 2D arrays.
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Summary and Remarks

• Probability is a key tool for modelling uncertainty.

• It has solid mathematical foundations, but it is governed by few
simple axioms.

• Probability makes it possible to reason about multiple related
variables and explain complex phenomena using marginal and
conditional probability and independence.

• Probability itself has various interpretations, which are useful in
framing problems in different ways.
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Introduction to
Machine Learning



The Grand Vision

Machine learning studies the algorithms and statistical tools that allow
computer systems to perform specific, well-defined tasks without
explicit instructions. It is a sub-field of artificial intelligence.

Broadly speaking, in order to do this:
1. We need a working model of the world that describes the task and

its context in a way a computer can understand.
2. We need a goal: how do wemeasure the performance of the model?

Because that is what we optimise for; usually it is the ability to
predict new events.

3. We encode our knowledge of the world drawing information from
training data, experts or both; this is called learning.

4. The computer system uses the model as a proxy of reality and, as
new inputs come in, to perform inference and decide if/how to
perform the assigned task.
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Robotics

Boston Dynamics robots can walk, run, move around (or jump over!)
obstacles and carry objects...
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Robotics

... even with pesky humans interfering...
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Robotics

... in violent ways!
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Playing Games

DeepMind AlphaGo beating the best human Go player!
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Diagnosing Diseases
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The Unfortunate Reality

https://xkcd.com/1838

However, building machine learning
applications is far from trivial and it is a
craft as much as it is a science.

• It requires large amounts of data,
which has to be collected keeping
the goal of the model in mind.

• It is difficult to decide how to
structure the model from a
mathematical and probabilistic
point of view

• It is difficult to evaluate and
troubleshoot models of any
real-world complexity.
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Identify the Variables to Include in the Model

The first step in building a machine learning model is to choose which
variables to include. Which aspects of/entities in the world do we need
the model to represent for the computer to carry out the assigned task?
This is known as feature selection.

• Each aspect of the world or entity is modelled with one random
variable.

• We should use a small enough number of variables because if we
have toomany:
• it is difficult it is to construct the model;
• it is difficult to interpret and troubleshoot it;
• the model requires too much computing power to learn and to run.

• Wemust choose which are the relevant events that make up the
sample space of each variable, again taking care of not having too
many.
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Identify the Variables to Include in the Model

For instance, to play a game of Go we need to model each piece using its
position on the board (which provides a regular grid to use for
coordinates) and which player it belongs to.

In robotics applications:

• the position of the robot, and the positions of its hands relative to
its body?

• the size and position of all the objects in the room?

• the size and position of the box to pick up?
All of these can be guessed from the information the robot gets from the
sensors it is equipped with (camera, infrared, radar, etc.). Then there is
the question of how to represent them (coordinates on a grid, and sizes
in increments of 5cm? real numbers?).

In clinical applications we need additional machine learning to even
figure out which variables we should include in our model...
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Generative versus Discriminative Models

The second step is choosing which class of machine learning models to
select from.

• Generativemodels: we have a set of variables𝑋1,… ,𝑋𝑁 describing
various components of a complex phenomenon, and we are
interested in modelling that phenomenon in a mechanistic way.
Hence, we want to show how the various parts interact with each
other, and in order to do that we choose to model their joint
probability P(𝑋1,… ,𝑋𝑁).

• Discriminative models: we have one particular variable (say,𝑋1)
that is closely tied with our model task, and a number of other
variables (𝑋2,… ,𝑋𝑁) which we believe can be used to explain it.
We do not care about how the𝑋𝑖 are related to each other, so we
just model P(𝑋1 ∣ 𝑋2,… ,𝑋𝑁).
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Generative versus Discriminative Models

Generative Models
Pros

More flexible in terms of what
questions they can answer.

Cons

More complicated to formulate.
Require more data to learn.

Discriminative Models
Pros

Require less data to learn.
Better at prediction than
generative models.

Cons

Exclusively focused on
predicting the variable of
interest.

The “Uncertainty Reasoning” covers generative models, the “Data
Mining” module covers discriminative models.
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Model Relationships Between Variables

How do we decide whether there is a relationships between variables? If
we had perfect knowledge we could completely describe the world. But
we never have perfect knowledge:

• in a game of Go, somemoves are more likely than others but we do
not know for sure what more our opponent will pick;

• in robotics we are limited by what the sensors can tell us;

• in clinical applications we are limited by what we can learn from
patients.

Hence we use the language of probability, and we say that two variables
are associated if the occurrence of an event in one variable affects the
probability of an event occurring in another variable. In other words,
they are associated if they are not independent, possibly given other
variables.
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An example: the Car Start Problem

“In the morning, my car will not start. The start engine turns, but nothing
happens. The battery is OK. The problemmay be due to dirty spark plugs
or the fuel may be stolen. I look at the fuel meter. It shows 1/2, hence I
expect the spark plugs to be dirty.”

We need to formalise this kind of reasoning into a model that a computer
can understand.

• What made we think of fuel and spark plugs?

• Why did we look at the fuel meter?

• Why had fuel meter reading an impact on our belief that spark plugs
are dirty?
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Car Start: Variables and Events

From the problem description, our task is to explain why the car will not
start using a model comprising these four variables:

• Fuel ;

• Spark Plugs ;

• Start ;

• Fuel Meter .

But how do wemodel the sample space in terms of events?

Realistic Pragmatic

Fuel 0%–100% Yes , No
Spark Plugs Work , Fault Work , Fault

Start Yes , No Yes , No
Fuel Meter 0%–100% Empty , Half , Full
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Car Start: Which Variables Are Associated?

In a generative model, P(Fuel, Spark Plugs, Fuel Meter, Start) is our
probabilistic model in its most general form. It leads to a table with
2 × 2 × 2 × 3 = 24 probabilities; it would be difficult for us to choose
accurate values for each of them.

We could simply use the chain rule to write the model as

P(Start, Fuel Meter, Fuel, Spark Plugs)
= P(Start ∣ Fuel Meter, Fuel, Spark Plugs)×

P(Fuel Meter ∣ Fuel, Spark Plugs)×
P(Fuel ∣ Spark Plugs)P(Spark Plugs)

but that does not change the complexity model, even if it breaks it apart
in smaller pieces.

To actually make it simpler we should ask: do we knowwhich variables
are associated with each other, and which are not?
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Car Start: Expert Knowledge of Associations

In our (expert?) knowledge:

• Start is associated with Fuel : from the definition of independence

P(Start = Yes ∣ Fuel = No) = 0 ≠ P(Start = Yes) > 0

so the two are not independent.

• Similarly, Start is associated with Spark Plugs .

• Fuel Meter is associated with Fuel , because the former is a
transformation of the latter. It is also easy to see that

P(Fuel Meter = Full ∣ Fuel = No) = 0 ≠
P(Fuel Meter = Full) > 0.
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Car Start: Expert Knowledge of Associations

• Start is not associated with Fuel Meter given Fuel for the same
reason: if we know the amount of Fuel , whether Fuel Meter is
Empty , Half or Full should not alter the probability that Start is
Yes or No .

• Fuel is not associated with Spark Plugs because knowing whether
Fuel is Yes or No should not alter the probability that Spark Plugs
are Work or Fault .

We can take these considerations and use them tomake the model
simpler by removing the variables we do not need from the conditional
probabilities.
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Car Start: a Simpler Model

Hence we are left with:

P(Start, Fuel Meter, Fuel, Spark Plugs)
= P(Start ∣ Fuel, Spark Plugs)P(Fuel Meter ∣ Fuel)×

P(Fuel)P(Spark Plugs)

If we represent this model as a graph,
with

• variables as nodes and

• associations as arcs
we get a qualitative view of what our
model looks like.

This representation is the key idea of
Bayesian networks, which we will cover
in the rest of the module.

Fuel

Fuel Meter

Spark Plugs

Start

18



Car Start: Probabilistic versus Causal Construction

In probability associations are symmetric; the derivation of Bayes’
theoremmakes it really clear that

P(𝑋1 ∣ 𝑋2)P(𝑋2) = P(𝑋1, 𝑋2) = P(𝑋2 ∣ 𝑋1)P(𝑋1).

In order to write the conditional probabilities, we used common sense to
choose the conditioning variables such that they affect the conditioned
variables.

But what does that mean from amodelling point of view? It means we
are giving arcs a causal interpretation and we choose arc directions to go
from cause (nodes) to effect (nodes).

How do we do that?
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Car Start: Playing with Arc Directions

P(Start, Fuel Meter, Fuel, Spark Plugs)
= P(Start ∣ Fuel, Spark Plugs)×

P(Fuel Meter ∣ Fuel)P(Fuel)×
P(Spark Plugs)

Fuel

Fuel Meter

Spark Plugs

Start

P(Start, Fuel Meter, Fuel, Spark Plugs)
= P(Start ∣ Fuel, Spark Plugs)×

P(Fuel Meter)P(Fuel ∣ Fuel Meter)×
P(Spark Plugs)

Fuel

Fuel Meter

Spark Plugs

Start
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Car Start: Playing with Arc Directions

The criterion to identify causes and effect is intervention. Consider:

• If we fill the tank with fuel, the fuel meter goes up.

• If we tamper with the fuel meter to make is say Full , the fuel tank
does not magically refill itself.

Hence, Fuel is the cause and Fuel Meter is the effect and the most
intuitive arc direction is Fuel → Fuel Meter .

What the probability P(Fuel Meter ∣ Fuel) tells us is just that if the fuel
meter says Full there probably is fuel in the tank, whereas if the fuel
meter says Empty there may be no fuel in the tank (assuming the fuel
meter works reliably).
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Car Start: Learning Association from Data

What if we do not have expert knowledge of associations, so we are stuck
at

P(Start, Fuel Meter, Fuel, Spark Plugs) = ?

It is possible to learn associations from data to select a goodmodel,
which will be covered later in the module. The key idea is that:
1. we collect data (that is, sets of values for all the variables in the

model);
2. we take different models and we compute the probability they give

to the data;
3. we choose the model that gives the highest probability to the data,

taking the complexity of the model into consideration.
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Car Start: the Conditional Probabilities

Spark Plugs
Work Fault

? ?

Fuel
Yes No

? ?

Fuel Meter
Fuel = Yes Fuel = No

Empty ? ?
Half ? ?
Full ? ?

Start
Spark Plugs = Work

Fuel = Yes Fuel = No

Yes ? ?
No ? ?

Spark Plugs = Fault
Fuel = Yes Fuel = No

Yes ? ?
No ? ?

After we decide that this model is good to go, we need to fill in the values
of all the conditional probabilities that are implied by the model.

The number of these probabilities gives the complexity of the model
(2 + 2 + 6 + 8 = 18 < 24).
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Car Start: the Conditional Probabilities

Again, we have two ways of doing that:

• ask someone with expert knowledge who can tell us which values to
fill in;

• estimate the (conditional) probabilities from the data with one of
the approaches we have seen earlier in the module.

Starting from expert knowledge, we can create the probability and
conditional probability tables as follows.
1. Store the events in the sample space for each variable.

Fuel.lvl = c("Yes", "No")
Spark.Plugs.lvl = c("Work", "Fault")
Fuel.Meter.lvl = c("Full", "Half", "Empty")
Start.lvl = c("Yes", "No")
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Car Start: Expert Probabilities in R

2. Create the probability tables labelling rows and columns for easy
reference.

Fuel.probs = array(c(0.98, 0.02), dim = 2, dimnames = list(Fuel = Fuel.lvl))
Spark.Plugs.probs = array(c(0.96, 0.04), dim = 2,

dimnames = list(Spark.Plugs = Spark.Plugs.lvl))
Fuel.Meter.probs = array(c(0.39, 0.60, 0.01, 0.01, 0.01, 0.98), dim = c(3, 2),

dimnames = list(Fuel.Meter = Fuel.Meter.lvl,
Fuel = Fuel.lvl))

Start.probs = array(c(0.99, 0.01, 0, 1, 0.01, 0.99, 0, 1), dim = c(2, 2, 2),
dimnames = list(Start = Start.lvl, Fuel = Fuel.lvl,

Spark.Plugs = Spark.Plugs.lvl))

3. Store all probability tables together in a list.

expert.probabilities = list(
Fuel = Fuel.probs,
Spark.Plugs = Spark.Plugs.probs,
Fuel.Meter = Fuel.Meter.probs,
Start = Start.probs

)
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Car Start: Expert Probabilities in R

The end result is this collection of expert probabilities, organised in
tables:

expert.probabilities$Fuel
Fuel
Yes No
0.98 0.02

expert.probabilities$Spark.Plugs
Spark.Plugs
Work Fault
0.96 0.04

expert.probabilities$Fuel.Meter
Fuel

Fuel.Meter Yes No
Full 0.39 0.01
Half 0.60 0.01
Empty 0.01 0.98

expert.probabilities$Start
, , Spark.Plugs = Work

Fuel
Start Yes No

Yes 0.99 0
No 0.01 1

, , Spark.Plugs = Fault

Fuel
Start Yes No

Yes 0.01 0
No 0.99 1

How can we get the same thing from data, without using an expert?
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Car Start: Probabilities from Data in R

Suppose we collect a number of data points for the four variables in the
model.

dim(training.set)
[1] 500 4

head(training.set)
Fuel Fuel.Meter Spark.Plugs Start

1 Yes Full Work Yes
2 Yes Half Work Yes
3 Yes Full Work Yes
4 Yes Half Work Yes
5 Yes Half Work Yes
6 Yes Half Work Yes

We can use these data to compute the frequentist probabilities we need
to fill in the model using the corresponding relative frequencies, as we
covered earlier in the module.
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Car Start: Probabilities from Data in R

Again, we can compute the absolute frequencies (*.counts) and then
the relative frequencies (*.probs) for each variable, making sure we get
the right conditional probabilities from prop.table() .

Fuel.counts = table(training.set[, "Fuel"])
Fuel.probs = prop.table(Fuel.counts)
Spark.Plugs.counts = table(training.set[, "Spark.Plugs"])
Spark.Plugs.probs = prop.table(Spark.Plugs.counts)
Fuel.Meter.counts = table(training.set[, c("Fuel.Meter", "Fuel")])
Fuel.Meter.probs = prop.table(Fuel.Meter.counts, margin = 2)
Start.counts = table(training.set[, c("Start", "Fuel", "Spark.Plugs")])
Start.probs = prop.table(Start.counts, margin = 2:3)

We can then organise them in a list as we did for the expert probabilities.

probability.tables = list(
Fuel = Fuel.probs,
Spark.Plugs = Spark.Plugs.probs,
Fuel.Meter = Fuel.Meter.probs,
Start = Start.probs

)
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Car Start: Probabilities from Data in R

The end result is this collection of frequentist probabilities, organised in
the same way as the expert probabilities:

probability.tables$Fuel

Yes No
0.988 0.012

probability.tables$Spark.Plugs

Work Fault
0.972 0.028

probability.tables$Fuel.Meter
Fuel

Fuel.Meter Yes No
Full 0.37854 0.00000
Half 0.61538 0.00000
Empty 0.00607 1.00000

probability.tables$Start
, , Spark.Plugs = Work

Fuel
Start Yes No

Yes 0.9833 0.0000
No 0.0167 1.0000

, , Spark.Plugs = Fault

Fuel
Start Yes No

Yes 0.0000
No 1.0000

Each set of probabilities gives a different model for the car start problem.
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Spot the Difference

• Expert probabilities are “nicer” in the sense that they are usually
reasonably round numbers with 2-3 decimal places.

• Expert probabilities give probabilities greater than zero to events that
are really rare, because the experts know these events are not
impossible. (An example: Fuel Meter = Full when Fuel = No ; fuel
meters are very reliable but they definitely can break.)

• Frequentist probabilities are limited by the data we can collect; we
may not actually observe rare events and then they get a probability
of exactly zero. But they are not impossible!

• For this reason, frequentist probabilities are bad at representing small
(≈ 0) and large (≈ 1) probabilities because they have a granularity of
1/nrow(training.set) (here 1/500).

• And if nrow(training.set) is small they are bad at representing any
probability.
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Training and Validation Data Sets

In machine learning we assess howwell a model works by looking at how
accurate it is in predicting new observations. To do this we need a data
set that has not been previously used to define the model (such as
computing frequentist probabilities); this second data set is called the
validation data set. It is “new” in the sense that the model has hot seen
these data before.

In contrast, the data set we use to define the model is called the training
data set, because it is used to train the model.

head(validation.set)
Fuel Fuel.Meter Spark.Plugs Start

1 No Empty Work No
2 Yes Full Work Yes
3 Yes Half Work Yes
4 Yes Half Work Yes
5 Yes Half Work Yes
6 Yes Full Work Yes
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Probability of the Validation Data Set

If we take the first data point from the validation set, we have complete
set of values for all the variables and we can feed those values to the
model to compute their joint probability.

new.data = validation.set[1, ]
probability.tables$Fuel[new.data$Fuel]

No
0.012

probability.tables$Spark.Plugs[new.data$Spark.Plugs]
Work

0.972
probability.tables$Fuel.Meter[new.data$Fuel.Meter, new.data$Fuel]

[1] 1
probability.tables$Start[new.data$Start, new.data$Fuel, new.data$Spark.Plugs]

[1] 1

So, the probability of that data point is 0.012 × 0.972 × 1 × 1 ≈ 0.012.
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Probability of the Validation Data Set

If we iterate over all the validation set, and wemultiply all the resulting
probabilities together we obtain its predictive probability.

validation.set.probability = 1
for (i in seq(nrow(validation.set))) {

val = validation.set[i, ]
new.prob = probability.tables$Fuel[val$Fuel] *

probability.tables$Spark.Plugs[val$Spark.Plugs] *
probability.tables$Fuel.Meter[val$Fuel.Meter, val$Fuel] *
probability.tables$Start[val$Start, val$Fuel, val$Spark.Plugs]

validation.set.probability = validation.set.probability * new.prob

}#FOR
as.numeric(validation.set.probability)

[1] 7.1e-44

Why dowe care about having amodel with a good predictive probability?
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Why the Probability of the Validation Data Set

The probability of the validation test is a measure of predictive accuracy,
that is, the ability of themodel to predict new events. The reason why we
want a model that maximises it is as follows.

1. The four variables in the model can take 24 combinations of values.
2. Some combinations of their values will have higher probabilities

(according to the model) than others.
3. In the validation sets, some combinations of values will appear

more frequently than others.
4. If the machine learningmodel is a good workingmodel of the world,

it should assign high probability to combinations of values that
appear more often.

5. Hence, we want a model that gives a high probability to the
validation set as a whole.
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The Log-Probability is What You Actually Want

Predictive accuracy is usually measured on a log-scale; on its natural
scale it becomes too small very quickly when the validation set or the
number of variables grow. It’s already≈ 10−43 for this simple model!
validation.log.probability = 0
for (i in seq(nrow(validation.set))) {

val = validation.set[i, ]
new.prob = probability.tables$Fuel[val$Fuel] *

probability.tables$Spark.Plugs[val$Spark.Plugs] *
probability.tables$Fuel.Meter[val$Fuel.Meter, val$Fuel] *
probability.tables$Start[val$Start, val$Fuel, val$Spark.Plugs]

validation.log.probability = validation.log.probability + log(new.prob)

}#FOR
as.numeric(validation.log.probability)

[1] -99.4

(The model with the expert probabilities gets -99.298, which is about the
same.)
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Car Start: Predicting Start

Sometimes wemay also be interested in the accuracy of predicting just
one variable given some other variables. For instance, we would like to
predict Start from the other variables.

errors = 0
for (i in seq(nrow(validation.set))) {

val = validation.set[i, ]
base.prob = probability.tables$Fuel[val$Fuel] *

probability.tables$Spark.Plugs[val$Spark.Plugs] *
probability.tables$Fuel.Meter[val$Fuel.Meter, val$Fuel]

Yes.prob = base.prob *
probability.tables$Start["Yes", val$Fuel, val$Spark.Plugs]

No.prob = base.prob *
probability.tables$Start["No", val$Fuel, val$Spark.Plugs]

if (ifelse(Yes.prob > No.prob, "Yes", "No") != val$Start)
errors = errors + 1

}#FOR
errors / nrow(validation.set)

[1] 0.01
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Car Start: Interrogating the Model

Amore general way of using a model is to interrogate it: we have some
evidence on some of the variables (that is, we assume we know their
values), and we would like to know the the probability of some event.

For instance: say that Fuel Meter = Half . How does P(Start = Yes)
change after we introduce this evidence in the model?

Predicting Start from all the other variables is a particular case in which
we have evidence on all the other variables.
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Car Start: the Exhaustive (Dumb) Way

Using probability axiom #2, we can write

P(Start = Yes) =
P(Start = Yes, Fuel = Yes) + P(Start = Yes, Fuel = No)

and then, recursively,

P(Start = Yes, Fuel = Yes) =
P(Start = Yes, Fuel = Yes, Spark.Plugs = Work)+

P(Start = Yes, Fuel = Yes, Spark.Plugs = Fault)

P(Start = Yes, Fuel = Yes, Spark.Plugs = Work)
= P(Start = Yes, Fuel = Yes, Spark.Plugs = Work, Fuel.Meter = Full)+

P(Start = Yes, Fuel = Yes, Spark.Plugs = Work, Fuel.Meter = Half)+
P(Start = Yes, Fuel = Yes, Spark.Plugs = Work, Fuel.Meter = Empty)
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Car Start: the Exhaustive (Dumb) Way

In practice this means that, for small models, we can just go through all
combinations of values of the other variables.

yes.prob = 0
for (FL in Fuel.lvl)
for (SP in Spark.Plugs.lvl)

for (FM in Fuel.Meter.lvl) {

yes.prob = yes.prob +
expert.probabilities$Fuel[FL] *
expert.probabilities$Spark.Plugs[SP] *
expert.probabilities$Fuel.Meter[FM, FL] *
expert.probabilities$Start["Yes", FL, SP]

}#FOR
as.numeric(yes.prob)

[1] 0.932

So P(Start = Yes) = 0.932, and P(Start = No) = 1 − 0.932 = 0.068.
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Car Start: the Exhaustive (Dumb) Way

half.prob = yes.and.half.prob = 0
for (FL in Fuel.lvl)
for (SP in Spark.Plugs.lvl) {

yes.and.half.prob = yes.and.half.prob + expert.probabilities$Fuel[FL] *
expert.probabilities$Spark.Plugs[SP] *
expert.probabilities$Fuel.Meter["Half", FL] *
expert.probabilities$Start["Yes", FL, SP]

}#FOR
for (FL in Fuel.lvl)
for (SP in Spark.Plugs.lvl)

for (ST in Start.lvl) {

half.prob = half.prob + expert.probabilities$Fuel[FL] *
expert.probabilities$Spark.Plugs[SP] *
expert.probabilities$Fuel.Meter["Half", FL] *
expert.probabilities$Start[ST, FL, SP]

}#FOR
as.numeric(yes.and.half.prob) / as.numeric(half.prob)

[1] 0.95

But is there a more efficient way of doing the same thing?
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Car Start: the Principled (Probabilistic) Way

P(Start = Yes, Fuel Meter = Half,
Fuel, Spark Plugs) =

= P(Start = Yes ∣ Fuel, Spark Plugs)×
P(Fuel Meter = Half ∣ Fuel)×
P(Fuel)P(Spark Plugs)

Fuel

Fuel Meter
 = "Half"

Spark Plugs

Start = "Yes"

P(Start = Yes, Fuel Meter = Half,
Fuel, Spark Plugs)

= P(Start ∣ Fuel, Spark Plugs)×
P(Fuel ∣ Fuel Meter = Half)×
P(Fuel.Meter = Half)

����P(Fuel)
×

����P(Fuel)P(Spark Plugs)

Fuel

Fuel Meter
 = "Half"

Spark Plugs

Start = "Yes"
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Car Start: the Principled (Probabilistic) Way

P(Start = Yes, Fuel, Spark Plugs ∣
Fuel Meter = Half)

= P(Start ∣ Fuel, Spark Plugs)×
P(Fuel ∣ Fuel Meter = Half)×

�����������P(Fuel.Meter = Half)
P(Fuel.Meter = Half)

×

P(Spark Plugs)

Fuel when
Fuel Meter

 = "Half"
Spark Plugs

Start = "Yes"

This leaves three variables, of which Start is fixed to Yes : hence we have
to consider P(Start = Yes) under four scenarios:

Fuel = Yes ∣ Fuel Meter = Half, Spark Plugs = Work
Fuel = Yes ∣ Fuel Meter = Half, Spark Plugs = Fault
Fuel = No ∣ Fuel Meter = Half, Spark Plugs = Work
Fuel = No ∣ Fuel Meter = Half, Spark Plugs = Fault

and sum the corresponding P(Start = Yes ∣ scenario)P(scenario).
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Summary and Remarks

• Machine learning aims to make computer systems able to learn from
and carry out tasks in the real world.

• Machine learning models represent a model of the world in a form
useful to a computer, and use the language of probability to represent
uncertainty.

• The focus of machine learning models is prediction, and by extension
probabilistic reasoning and inference, so that the computer system
can use the models to decide how to react to its environment.

• Generative models are better for reasoning, discriminative models are
better for prediction; we focus on the former in this module.
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Introduction to
Bayesian Networks



Automating Modelling and Reasoning

Earlier in the course we have seen a simple machine learning model,
which we have manually constructed with intuitive reasoning and
manual applications on the probability axioms.

Nowwe want to automate the whole process, so that the computer
system itself will (ideally) do all the work.

A model that promises to do this is Bayesian networks:

• they combine graphs and probability as we did earlier, but in a
rigorous fashion;

• there are algorithms for automating reasoning that use the
graphical part of the model to guide a computer system in applying
the probability axioms to compute probabilities and predict events
of interest;

• it is possible to learn them automatically from data.
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Bayesian Networks in R: the bnlearn Package

Themost comprehensive R package for working with Bayesian networks
is bnlearn, which you should install by

install.packages("bnlearn")

The reference website for bnlearn is:

http://www.bnlearn.com

The list of functions in the package is available from:

help(package = "bnlearn")

The documentation of individual functions can be accessed with the ?
operator after loading the package they are in:

library(bnlearn)
?empty.graph

2
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Bayesian Networks in R: Auxiliary Packages

There are many thousands of packages available for R: bnlearn uses a
few for plotting (lattice, Rgraphviz) and to perform Bayesian network
inference (gRain). You can install all of themwith:

source("http://bioconductor.org/biocLite.R")
biocLite(c("graph", "Rgraphviz", "RBGL"))
install.packages(c("gRain", "lattice"))

bnlearnwill automatically load them as needed; and they can be loaded
explicitly as well to use their functions directly.
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The Architecture of bnlearn

Data

(data frame)

Learned Network

(class bn)

Expert Knowledge

(priors, whitelist, blacklist, ...)

Learned Parameters

(class bn.fit)

Expert System

(class bn.fit)

Expert Network

(class bn)

Inference

(cpquery and cpdist)

Prediction

(predict)

Simulation

(rbn and cpdist)

Plots

(lattice and Rgraphviz)

BN Repository

(class bn.fit)
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A Graph and a Probability Distribution

Bayesian networks (BNs) are defined by:

• a network structure, a directed acyclic graph𝒢, in which each node
corresponds to a random variable𝑋𝑖;

• a global probability distribution over X = {𝑋1,… ,𝑋𝑁}which can
be factorised into smaller local probability distributions according
to the arcs present in the graph.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

P(X) =
𝑁
∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
; Θ𝑋𝑖

) where Π𝑋𝑖
= {parents of𝑋𝑖}.
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Graphs

The first component of a BN is a graph. A graph
𝒢 is a mathematical object with:

• a set of nodes;

• a set of arcs𝐴which are identified by
pairs for nodes.

Given the nodes, a graph is uniquely identified
by the arc set. An arc can be:

• undirected if the arc has no direction, for
instance𝐴−𝐵;

• directed if the arc has a specific direction,
for instance𝐴 → 𝐵.

The assumption is that there is at most one arc
between each, pair of nodes.

E
A

B

C

D

A B

C D

E

6



Directed Acyclic Graphs

BNs use a specific kind of graph called a directed acyclic graph (DAG),
that:

• contains only directed arcs;

• does not contain any loop (an arc𝐷 → 𝐷 from a node to itself);

• does not contain any cycle (a sequence of arcs like
𝐵 → 𝐶 → 𝐷 → 𝐵 that starts and ends in the same node).

A B

C D

E

A B

C D

E

A B

C D

E

7



Computer Representations of Graphs

Graphs are uniquely identified by their arcs, and the latter have three
possible computer representations:
• arc set:

{𝐴 → 𝐵, 𝐷 → 𝐵, 𝐶 → 𝐷, 𝐶 → 𝐴, 𝐶 → 𝐸} ;

• arc list: in which each node is associated with its children,

{𝐴 = {𝐵} ,𝐵 = {∅} , 𝐶 = {𝐷,𝐴,𝐸} ,𝐷 = {𝐵} ,𝐸 = {∅}} ;

• adjacency matrix: in which parents are on the rows and children are
on the columns,

𝐴 𝐵 𝐶 𝐷 𝐸
𝐴
𝐵
𝐶
𝐷
𝐸

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
0 0 0 0 0
1 0 0 1 1
0 1 0 0 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦
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Creating Graphs

• Setting individual arcs.
dag = empty.graph(nodes = c("A", "B", "C", "D", "E"))
dag = set.arc(dag, from = "A", to = "B")
dag = set.arc(dag, from = "D", to = "B")
dag = set.arc(dag, from = "C", to = "D")
dag = set.arc(dag, from = "C", to = "A")
dag = set.arc(dag, from = "C", to = "E")

• Setting the whole arc set at once.
arc.set = matrix(c("A", "B",

"D", "B",
"C", "D",
"C", "A",
"C", "E"),

byrow = TRUE, ncol = 2,
dimnames = list(NULL, c("from", "to")))

arcs(dag) = arc.set
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Creating Graphs

• Using the adjacency matrix representation of the arc set.
amat(dag) =
matrix(c(0L, 1L, 0L, 0L, 0L,

0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 1L, 1L,
0L, 1L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L),

byrow = TRUE, nrow = 5, ncol = 5,
dimnames = list(nodes(dag), nodes(dag)))

• Using the formula representation for the Bayesian network.
dag = model2network("[A|C][B|A:D][C][D|C][E|C]")

Acyclicity is enforced by all there functions by default:

set.arc(dag, from = "B", to = "C")
Error in arc.operations(x = x, from = from, to = to, op = "set", check.cycles =

check.cycles, : the resulting graph contains cycles.
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Plotting Graphs

Themain plotting function in
bnlearn is graphviz.plot()
which is based on the
Rgraphviz package and the
Graphviz library by AT&T.

It produces interpretable
graph layouts automatically
and supports highlighting
nodes and arcs.

graphviz.plot(dag, layout = "circo",
shape = "rectangle",
highlight =

list(nodes = children(dag, "C"),
arcs = outgoing.arcs(dag, "C"),
fill = "palegreen2",
col = "darkgreen", lwd = 5))

A

B C

D

E
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How the DAG Maps to the Probability Distribution

C
A B

D
E

F

DAG
Graphical
separation

Probabilistic
independence

Formally, the DAG is an independencemap of the probability distribution
of X, with graphical separation (⟂⟂𝐺) implying probabilistic
independence (⟂⟂𝑃 ).
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Graphical Separation in DAGs: Fundamental Connections

separation (undirected graphs)

d-separation (directed acyclic graphs)

C
A B

C
A B

C
A B

C
A B
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Graphical Separation in DAGs: General Case

Now, in the general case we can extend the patterns from the
fundamental connections and apply them to every possible path
between A and B for a given C; this is how d-separation is defined.

If A, B and C are three disjoint subsets of nodes in a directed
acyclic graph 𝒢, then C is said to d-separate A from B, denoted
A ⟂⟂𝐺 B ∣ C, if along every path between a node in A and a
node in B there is a node 𝑣 satisfying one of the following two
conditions:
1. 𝑣 has converging edges (that is, there are two edges

pointing to 𝑣 from the adjacent nodes in the path) and none
of 𝑣 or its descendants (that is, the nodes that can be
reached from 𝑣) are in C.

2. 𝑣 is in C and does not have converging edges.

This definition clearly does not provide a computationally feasible
approach to assess d-separation; but there are other ways.
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A Simple Algorithm to Check D-Separation

C
A B

D
E

F

C
A B

D
E

F

Say we want to check whether𝐴 and𝐸 are d-separated by𝐵. First, we
can drop all the nodes that are not ancestors (that is, parents, parents’
parents, etc.) of𝐴,𝐸 and𝐵 since each node only depends on its parents.
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A Simple Algorithm to Check D-Separation

C
A B

E

C
A B

E

Transform the subgraph into its moral graph by
1. connecting all nodes that have one child in common; and
2. removing all arc directions to obtain an undirected graph.

This transformation has the double effect of making the dependence
between parents explicit by “marrying” them and of allowing us to use
the classic definition of graphical separation.
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A Simple Algorithm to Check D-Separation

C
A B

E

Finally, we can just perform a depth-first or breadth-first search and see if
we can find an open path between𝐴 and𝐸, that is, a path that is not
blocked by𝐵.
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D-Separation Example: the DAG We Created Earlier

Say that we want to check whether A and D are d-separated by B in the
DAG we created earlier, dag .
0. Take a look at the original DAG: A and D share a child (B) that is part of

the d-separating set.
graphviz.plot(dag, layout = "circo",
highlight = list(nodes = c("A", "D"), fill = "palegreen2",

col = "darkgreen"))

A

B C

D

E
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D-Separation Example: the DAG We Created Earlier

1. Drop all the nodes that are not ancestors of A , D , or B , and obviously
keep A , D and B!
ancestorsA = ancestors(dag, node = "A")
ancestorsD = ancestors(dag, node = "D")
ancestorsB = ancestors(dag, node = "B")
step1 = subgraph(dag, nodes = unique(c("A", "D", "B",

ancestorsA, ancestorsD, ancestorsB)))

graphviz.plot(step1, layout = "circo",
highlight = list(nodes = c("A", "D"), fill = "palegreen2",

col = "darkgreen"))

A

D

B C
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D-Separation Example: the DAG We Created Earlier

2. Transform the DAG step1 into the moral graph step2 .
step2 = moral(step1)

graphviz.plot(step2, layout = "circo",
highlight = list(nodes = c("A", "D"), fill = "palegreen2",

col = "darkgreen"))

A

D

B C
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D-Separation Example: the DAG We Created Earlier

3. Remove the d-separating node to remove all the paths that pass
through it.
step3 = subgraph(step2, nodes = setdiff(nodes(step2), "B"))

graphviz.plot(step3, layout = "circo",
highlight = list(nodes = c("A", "D"), fill = "palegreen2",

col = "darkgreen"))

A

D
C
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D-Separation Example: the DAG We Created Earlier

4. Check whether there is still a path from A to D .
path.exists(step3, from = "A", to = "D")

[1] TRUE
path.exists(step3, from = "D", to = "A")

[1] TRUE

Since step3 is an undirected graphs, if there is a path from A to D there is
a path from D to A . This means that d-separation is symmetric:

A �⟂⟂ 𝐺 D ∣ B ⟺ D �⟂⟂ 𝐺 A ∣ B

Which must be the case because in probability independence is also
symmetric:

P(A, D ∣ B) = P(D, A ∣ B) ≠ P(A ∣ B)P(D ∣ B),

and d-separation implies probabilistic independence.
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Checking D-Separation

Our conclusion is: there is a path between A and D in step3 that does not
pass through/is not blocked by B , so A and D are not d-separated and are
not conditionally independent.

dsep(dag, "A", "D", "B")
[1] FALSE

NOTE: d-separation does not necessarily require a separating set. Or, to
put it in another way, the separating set can be empty.

dsep(dag, "A", "D")
[1] FALSE

In that case we are checking whether A and D aremarginally independent
because there is any path at all that connects them.
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The Local Markov Property

If we use d-separation as our definition of graphical separation,
assuming that the DAG is an independence map leads to the general
formulation of the decomposition of the global distribution P(X):

P(X) =
𝑁
∏
𝑖=1

P(𝑋𝑖 ∣ Π𝑋𝑖
)

into the local distributions for the𝑋𝑖 given their parentsΠ𝑋𝑖
. If𝑋𝑖 has

two or more parents it depends on their joint distribution, because each
pair of parents forms a convergent connection centred on𝑋𝑖 and we
cannot establish their independence. This decomposition is preferable
to that obtained from the chain rule,

P(X) =
𝑁
∏
𝑖=1

P(𝑋𝑖 ∣ 𝑋𝑖+1,… ,𝑋𝑁)

because the conditioning sets are typically smaller.
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The Local Markov Property

Another result along the same lines is called the local Markov property,
which can be combined with the chain rule above to get the
decomposition into local distributions.

Eachnode𝑋𝑖 is conditionally independent of its non-descendants
(the nodes𝑋𝑗 for which there is no path from𝑋𝑖 to𝑋𝑗) given its
parents.

Compared to the previous decomposition, it highlights the fact that
parents are not completely independent from their children in the BN; a
trivial application of Bayes’ theorem to invert the direction of the
conditioning shows how information on a child can change the
distribution of the parent.
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The Local Markov Property: Car Start

graphviz.plot(car.start,
shape = "ellipse")

Fuel

Fuel Meter

Spark Plugs

Start

Printing the parents of each node:

for (node in nodes(car.start))
cat(node, "has parents:",
parents(car.start, node), "\n")

Fuel has parents:
Fuel Meter has parents: Fuel
Spark Plugs has parents:
Start has parents: Fuel Spark Plugs

The corresponding decomposition:

P(Start, Fuel Meter, Fuel,
Spark Plugs) =

P(Start ∣ Fuel, Spark Plugs)
P(Fuel Meter ∣ Fuel)×

P(Fuel)P(Spark Plugs)
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The Local Markov Property: the DAG We Created Earlier

graphviz.plot(dag)

A

B

C

D E

Printing the parents of each node:

for (node in nodes(dag))
cat(node, "has parents:",
parents(dag, node), "\n")

A has parents: C
B has parents: A D
C has parents:
D has parents: C
E has parents: C

The corresponding decomposition:

P(A, B, C, D, E) =
P(A ∣ C)P(B ∣ A, D)

P(C)P(D ∣ C)P(E ∣ C)
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Completely D-Separating: Markov Blankets

Parents Children

Children's other parents
(Spouses)

Markov blanket of A

A

FI

H E

D

C

B

G

We can easily use the DAG to solve
the feature selection problem. The
set of nodes that graphically isolates
a target node from the rest of the
DAG is called its Markov blanket and
includes:

• its parents;

• its children;

• other nodes sharing a child.
Since⟂⟂𝐺 implies⟂⟂𝑃, we can restrict
ourselves to the Markov blanket to
perform any kind of inference on the
target node, and disregard the rest.
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Markov Blanket: Car Start

mbS = mb(car.start, node = "Start")
graphviz.plot(car.start,
shape = "ellipse",
highlight = list(nodes = mbS))

Fuel

Fuel Meter

Spark Plugs

Start

Printing the parents, children
and spouses of Start :

parents(car.start, node = "Start")
[1] "Fuel" "Spark Plugs"

children(car.start, node = "Start")
character(0)

spouses(car.start, node = "Start")
character(0)

In one go:

mb(car.start, node = "Start")
[1] "Fuel" "Spark Plugs"
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Markov Blanket: The DAG we created earlier

mbD = mb(dag, node = "D")
graphviz.plot(dag,
shape = "ellipse",
highlight = list(nodes = mbD))

A

B

C

D E

Printing the parents, children
and spouses of Start :

parents(dag, node = "D")
[1] "C"

children(dag, node = "D")
[1] "B"

spouses(dag, node = "D")
[1] "A"

In one go:

mb(dag, node = "D")
[1] "A" "B" "C"
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Different DAGs, Same Distribution

A DAG uniquely identifies a factorisation of P(X); the converse is not
necessarily true. Consider this DAG:

large = model2network(paste0("[X1][X3][X5][X6|X8][X2|X1][X7|X5][X4|X1:X2]",
"[X8|X3:X7][X9|X2:X7][X10|X1:X9]"))

graphviz.plot(large)
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X2 X3
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Different DAGs, Same Distribution

The decomposition into local distributions is:

P(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10) =
P(𝑋1)P(𝑋3) P(𝑋5)⏟

𝑋5

P(𝑋6 ∣ 𝑋8)P(𝑋2 ∣ 𝑋1) P(𝑋7 ∣ 𝑋5)⏟⏟⏟⏟⏟
𝑋5→𝑋7

P(𝑋4 ∣ 𝑋1, 𝑋2)P(𝑋8 ∣ 𝑋3, 𝑋7)P(𝑋9 ∣ 𝑋2, 𝑋7)P(𝑋10 ∣ 𝑋1, 𝑋9).

However, look at𝑋5 → 𝑋7: P(𝑋7 ∣ 𝑋5)P(𝑋5) = P(𝑋5 ∣ 𝑋7)P(𝑋7) by
Bayes’ theorem. Then

P(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10) =
P(𝑋1)P(𝑋3) P(𝑋7)⏟

𝑋7

P(𝑋6 ∣ 𝑋8)P(𝑋2 ∣ 𝑋1) P(𝑋5 ∣ 𝑋7)⏟⏟⏟⏟⏟
𝑋7→𝑋5

P(𝑋4 ∣ 𝑋1, 𝑋2)P(𝑋8 ∣ 𝑋3, 𝑋7)P(𝑋9 ∣ 𝑋2, 𝑋7)P(𝑋10 ∣ 𝑋1, 𝑋9).
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Different DAGs, Same Distribution

The DAG that gives this new, equivalent decomposition is:

large2 = reverse.arc(large, from = "X5", to = "X7")
graphviz.plot(large2, highlight = list(nodes = c("X5", "X7"),

arcs = c("X7", "X5"), lwd = 2))
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Different DAGs, Same Distribution

Next let’s look at𝑋8 → 𝑋6.

P(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10) =
P(𝑋1)P(𝑋3)P(𝑋7) P(𝑋6 ∣ 𝑋8)⏟⏟⏟⏟⏟

𝑋8→𝑋6

P(𝑋2 ∣ 𝑋1)P(𝑋5 ∣ 𝑋7)

P(𝑋4 ∣ 𝑋1, 𝑋2) P(𝑋8 ∣ 𝑋3, 𝑋7)⏟⏟⏟⏟⏟⏟⏟
𝑋8←𝑋3,𝑋8←𝑋7

P(𝑋9 ∣ 𝑋2, 𝑋7)P(𝑋10 ∣ 𝑋1, 𝑋9).

We cannot reverse the𝑋8 → 𝑋6 as we did with𝑋5 → 𝑋7 without
changing the probability distribution. If we try, we get

P(𝑋6 ∣ 𝑋8)P(𝑋8 ∣ 𝑋3, 𝑋7) = P(𝑋8 ∣ 𝑋6)P(𝑋6)
P(𝑋8 ∣ 𝑋3, 𝑋7)

P(𝑋8)
,

which does not simplify because𝑋8 has other parents (𝑋3,𝑋7).
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Different DAGs, Same Distribution

Finally, let’s look at𝑋1,𝑋2 and𝑋4.

P(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, 𝑋8, 𝑋9, 𝑋10) =
P(𝑋1)⏟

𝑋1

P(𝑋3)P(𝑋5)P(𝑋6 ∣ 𝑋8) P(𝑋2 ∣ 𝑋1)⏟⏟⏟⏟⏟
𝑋1→𝑋2

P(𝑋7 ∣ 𝑋5)

P(𝑋4 ∣ 𝑋1, 𝑋2)⏟⏟⏟⏟⏟⏟⏟
𝑋1→𝑋4,𝑋2→𝑋4

P(𝑋8 ∣ 𝑋3, 𝑋7)P(𝑋9 ∣ 𝑋2, 𝑋7)P(𝑋10 ∣ 𝑋1, 𝑋9).

By Bayes’ theoremwe can say

P(𝑋1)P(𝑋2 ∣ 𝑋1)P(𝑋4 ∣ 𝑋1, 𝑋2) = P(𝑋1, 𝑋2, 𝑋4) =
P(𝑋2)⏟

𝑋2

P(𝑋2 ∣ 𝑋4)⏟⏟⏟⏟⏟
𝑋4→𝑋2

P(𝑋1 ∣ 𝑋2, 𝑋4)⏟⏟⏟⏟⏟⏟⏟
𝑋1←𝑋2,𝑋1←𝑋4

which gives us another DAG again.
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Different DAGs, Same Distribution

The DAG that gives this last equivalent decomposition is:

large3 = set.arc(large2, from = "X1", to = "X2")
large3 = set.arc(large3, from = "X4", to = "X2")
large3 = set.arc(large3, from = "X4", to = "X1")
graphviz.plot(large3, highlight =
list(nodes = c("X1", "X2", "X4"),

arcs = arcs(subgraph(large3, c("X1", "X2", "X4"))), lwd = 2))
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Comparing These Different DAGs

par(mfrow = c(1, 3))
graphviz.compare(large, large2, large3,
main = c("original", "equivalent", "equivalent"))
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Different DAGs, Same Distribution: Equivalence Classes

To sum it up: we can reverse a number of arcs without changing the
dependence structure of X. Since the fundamental connections
𝐴 → 𝐶 → 𝐵 and𝐴 ← 𝐶 → 𝐵 are probabilistically equivalent, we can
reverse the directions of their arcs as we like as long as we do not create
any new v-structure (𝐴 → 𝐶 ← 𝐵, with no arc between𝐴 and𝐵).

This means that we can group DAGs into equivalence classes that are
uniquely identified by the underlying undirected graph and the
v-structures. The directions of other arcs can be either:

• uniquely identifiable because one of the directions would introduce
cycles or new v-structures (compelled arcs);

• completely undetermined.

The result is a completed partially directed graph (CPDAG).
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What Are V-Structures, and What Are Not

It is important to note that even though𝐴 → 𝐶 ← 𝐵 is a convergent
connection, it is not a v-structure if𝐴 and𝐶 are connected by𝐴 → 𝐵 or
𝐵 → 𝐴. As a result, we are no longer able to identify which nodes are the
parents in the connection.

For instance:

P(𝐴)P(𝐵 ∣ 𝐴)P(𝐶 ∣ 𝐴,𝐵)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐴→𝐶←𝐵, 𝐴→𝐵

= P(𝐴)
P(𝐵,𝐴)

P(𝐴)
P(𝐶,𝐴,𝐵)

P(𝐴,𝐵)
=

= P(𝐴)P(𝐶,𝐵 ∣ 𝐴) = P(𝐴)P(𝐵 ∣ 𝐶,𝐴)P(𝐶 ∣ 𝐴)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐶→𝐵←𝐴, 𝐴→𝐶

.

Therefore, the fact that the two parents in a convergent connection are
not connected by an arc is crucial in the identification of the correct
CPDAG.
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Our DAG

From this description we can tell different groups of arcs apart:

directed.arcs(large)
from to

[1,] "X8" "X6"
[2,] "X1" "X2"
[3,] "X5" "X7"
[4,] "X1" "X4"
[5,] "X2" "X4"
[6,] "X3" "X8"
[7,] "X7" "X8"
[8,] "X2" "X9"
[9,] "X7" "X9"
[10,] "X1" "X10"
[11,] "X9" "X10"

undirected.arcs(large)
from to

compelled.arcs(large)
from to

[1,] "X1" "X10"
[2,] "X2" "X9"
[3,] "X3" "X8"
[4,] "X7" "X8"
[5,] "X7" "X9"
[6,] "X8" "X6"
[7,] "X9" "X10"

vstructs(large)
X Z Y

[1,] "X1" "X10" "X9"
[2,] "X3" "X8" "X7"
[3,] "X2" "X9" "X7"
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The Corresponding CPDAG

Which in the corresponding CPDAG become:

directed.arcs(cpdag(large))
from to

[1,] "X1" "X10"
[2,] "X2" "X9"
[3,] "X3" "X8"
[4,] "X7" "X8"
[5,] "X7" "X9"
[6,] "X8" "X6"
[7,] "X9" "X10"

undirected.arcs(cpdag(large))
from to

[1,] "X1" "X2"
[2,] "X1" "X4"
[3,] "X2" "X1"
[4,] "X2" "X4"
[5,] "X4" "X1"
[6,] "X4" "X2"
[7,] "X5" "X7"
[8,] "X7" "X5"

compelled.arcs(cpdag(large))
from to

[1,] "X1" "X10"
[2,] "X2" "X9"
[3,] "X3" "X8"
[4,] "X7" "X8"
[5,] "X7" "X9"
[6,] "X8" "X6"
[7,] "X9" "X10"

vstructs(cpdag(large))
X Z Y

[1,] "X1" "X10" "X9"
[2,] "X3" "X8" "X7"
[3,] "X2" "X9" "X7"
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DAG, CPDAG and Equivalent DAGs

DAG
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CPDAG
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An Equivalent DAG
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Two More Examples of Markov Blankets
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Two More Examples of Markov Blankets

We can verify again that the Markov blanket (of𝑋9) contains the
children, the parents and the spouses of the node it is centred on...
mb(large, node = "X9")

[1] "X1" "X10" "X2" "X7"
par.X9 = parents(large, node = "X9")
ch.X9 = children(large, node = "X9")
sp.X9 = sapply(ch.X9, parents, x = large)
sp.X9 = sp.X9[sp.X9 != "X9"]
unique(c(par.X9, ch.X9, sp.X9))

[1] "X2" "X7" "X10" "X1"

... and that it does not contain the node itself. Same for𝑋7.
mb(large, node = "X7")

[1] "X2" "X3" "X5" "X8" "X9"
par.X7 = parents(large, node = "X7")
ch.X7 = children(large, node = "X7")
sp.X7 = sapply(ch.X7, parents, x = large)
sp.X7 = sp.X7[sp.X7 != "X7"]
unique(c(par.X7, ch.X7, sp.X7))

[1] "X5" "X8" "X9" "X3" "X2"
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Markov Blankets are Symmetric

We can also check that Markov blankets are symmetric: if𝐴 is in the
Markov blanket of𝐵, then𝐵 is in the Markov blanket of𝐴.

sapply(nodes(large), function(node) node %in% mb(large, node = "X9"))
X1 X10 X2 X3 X4 X5 X6 X7 X8 X9

TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
sapply(nodes(large), function(node) "X9" %in% mb(large, node = node))

X1 X10 X2 X3 X4 X5 X6 X7 X8 X9
TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

This is a consequence of the fact that if𝐴 is a parent of𝐵, then𝐵 is a
child of𝐴; and if𝐴 is a spouse of𝐵, then𝐵 is a spouse of𝐴.
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R Programming: a Summary

• creating DAGs: empty.graph() , set.arc() , drop.arc() ,
reverse.arc() .

• model string representations: modelstring() , model2network() .

• nodes in a DAG: nodes() , parents() , children() , spouses() ,
nbr() , mb() .

• arcs in a DAG: arcs() , path.exists() , dsep() , directed.arcs() ,
undirected.arcs() , compelled.arcs() .

• DAG transformation: subgraph() , moral() , cpdag() .

• plotting: graphviz.plot() , graphviz.compare() .
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Summary and Remarks

• BNs are a probabilistic model that use DAGs to make computations
systematic in a rigorous way.

• BNs allow computer systems to perform automatically all the
computations we did by hand at the beginning of the course.

• At the same time, BNs using DAGs means that they provide a
qualitative, intuitive way to reason about complex phenomena.

Next:

• How do we construct a BN?

• How do wemake a computer system answer questions using a BN?
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Constructing a
Bayesian Network



An Example: Train Use Survey

Consider a simple survey whose aim is to investigate the usage patterns of
different means of transport, with a focus on cars and trains.

• Age (A): young for individuals below 30 years old, adult for individuals
between 30 and 60 years old, and old for people older than 60.

• Sex (S):male or female.

• Education (E): up to high school or university degree.

• Occupation (O): employee or self-employed.

• Residence (R): the size of the city the individual lives in, recorded as either
small or big.

• Travel (T): the means of transport favoured by the individual, recorded
either as car, train or other.

The nature of the variables recorded in the survey suggests how they may be
related with each other.
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The Train Use Survey as a BN (v1)

A

E

O R

S

T

That is a prognostic view of the survey as a BN:
1. the blocks in the experimental design on top

(e.g. stuff from the registry office);
2. the variables of interest in the middle (e.g.

socio-economic indicators);
3. the object of the survey at the bottom (e.g.

means of transport).

Variables that can be thought as “causes” are on
above variables that can be considered their “ef-
fect”, and confounders are on above everything
else.
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The Train Use Survey as a BN (v2)

A

E

O

R

S

T
That is a diagnostic view of the survey as a BN:
it encodes the same dependence relationships as
theprognostic viewbut is laidout tohave “effects”
on top and “causes” at the bottom.

Depending on the phenomenon and the goals of
the survey, onemayhaveagraph thatmakesmore
sense than the other; but they are equivalent for
any subsequent inference.
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Creating the Survey Network

Firstly, we create a DAG with one node for each variable in the survey and
no arcs.
survey.dag = empty.graph(nodes = c("A", "S", "E", "O", "R", "T"))

This is the empty graph, because it has an empty arc set. The DAG is
stored in an object of class bn .
survey.dag

Random/Generated Bayesian network

model:
[A][S][E][O][R][T]

nodes: 6
arcs: 0

undirected arcs: 0
directed arcs: 0

average markov blanket size: 0.00
average neighbourhood size: 0.00
average branching factor: 0.00

generation algorithm: Empty
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Expert Knowledge, Prior Information: Sex

Education Schools Teachers Universities Students

University gender gap at record high as
30,000 more women accepted
Ucas says young women a third more likely to go to
university than men, and overall admissions are down on
last year

Press Association
Sun 27 Aug 2017
19.01 EDT

 Students check their A-level results. Photograph: Andrew Matthews/PA

Higher
education
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Expert Knowledge, Prior Information: Age

Alison Kershaw

Record numbers of teenagers going to
university in England and Scotland, study
finds
One in three youngsters in England and one in four in Scotland have been awarded university places
this year

|  |

Hike comes as overall numbers fall, due to fewer mature and EU students ( Getty )

Sunday 17 September 2017 19:19
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Creating the Survey Network

Nowwe can start adding the arcs that encode the direct dependencies
between the variables in the survey.

• Age and Sex are not influenced by any of the other variables, hence we
do not need any arcs pointing to either variable.

• Age has a direct influence on Education. The number of people
attending universities has increased over the years: so younger
people are more likely to have a university degree than older people.
survey.dag = set.arc(survey.dag, from = "A", to = "E")

• Sex also influences Education; the gender gap in university
applications has been widening for many years, with women
outnumbering and outperforming men.
survey.dag = set.arc(survey.dag, from = "S", to = "E")
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Expert Knowledge, Prior Information: Education

›  Lifestyle › Education & Careers

Britain's highest paying degrees,
according to UK graduate salaries
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Expert Knowledge, Prior Information: Education

The voice of universities

Graduates more likely to be in employment and earn more
than non-graduates – new statistics
24 April 2018
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Expert Knowledge, Prior Information: Education

 Money Property Pensions Savings Borrowing Careers
 

London attracts one-quarter of graduates
from UK universities
Centre for Cities report finds 24% of new graduates in 2014
and 2015 were working in capital within six months of
finishing

Katie Allen
Sun 20 Nov 2016
19.01 EST

 Students at London South Bank University. The capital benefits from a brain drain from the north of England.
Photograph: Dan Kitwood/Getty Images

North-south
divide
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Creating the Survey Network

• Education strongly influences Occupation because higher education
levels help in accessing more prestigious professions.
survey.dag = set.arc(survey.dag, from = "E", to = "O")

• Education influences Residence as well because people oftenmove to
attend a particular university or to find a job that matches the skills
they acquired in their studies.
survey.dag = set.arc(survey.dag, from = "E", to = "R")

This leaves only the arcs to the Travel variable.
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Expert Knowledge, Prior Information: Travel

Travel by local authority
Click heading to sort table. Download this data

Place
Total

people
Work at
home, %

Tube, metro, light rail,
tram, %

Train,
%

Bus, coach,
%

Taxi,
%

Motorcycle
etc %

Driving
%

Passenger in car or
van, %

Cycle,
%

On foot,
%

ENGLAND 38,881,374 3.5 2.6 3.5 4.9 0.3 0.5 36.9 3.3 1.9 6.9
NORTH EAST 1,924,206 2.2 1.5 0.7 5.6 0.5 0.3 36.9 4.2 1.1 6.4
NORTH WEST 5,184,216 2.8 0.4 1.7 5.2 0.5 0.4 39 3.8 1.4 6.8
YORKSHIRE AND THE
HUMBER

3,875,219 2.9 0.3 1.5 5.3 0.4 0.4 38.4 4 1.6 7.4

EAST MIDLANDS 3,336,532 3.3 0.2 0.9 4 0.3 0.5 42.2 3.9 1.8 7.1
WEST MIDLANDS 4,067,119 3 0.2 1.6 4.8 0.3 0.4 40.6 3.8 1.2 6.2
EAST 4,245,544 3.8 0.8 4.8 2.5 0.3 0.5 41.4 3.4 2.4 6.8
LONDON 6,117,482 3.3 14.7 8.7 9.2 0.3 0.8 18.3 1.1 2.6 5.8
SOUTH EAST 6,274,341 4.5 0.2 5 3 0.3 0.6 41.3 3.2 2 7.4
SOUTH WEST 3,856,715 4.6 0.1 1 3.1 0.2 0.7 41.4 3.4 2.3 9

CensusUK newsNews

Car, bike, train, or walk: how people get to work mapped
The 2011 census revealsthe main way people commute to work in 34,753 'output areas' across England and
Wales, each of 1,500 people. Find out what happens where you live - which are the top areas for cycling, driving
and walking? And why the local concentrations of each? 

12



Creating the Survey Network

• Finally, the preferred means of transport are directly influenced by
both Occupation and Residence. For Occupation, the reason is that a
few jobs require periodic long-distance trips, while others require
more frequent trips but on shorter distances.
survey.dag = set.arc(survey.dag, from = "O", to = "T")

• For Residence, the reason is that both commute time and distance are
deciding factors in choosing between travelling by car or by train.
survey.dag = set.arc(survey.dag, from = "R", to = "T")

On the whole, the model formula (which resembles the corresponding
probability notation) of the network is the following:
modelstring(survey.dag)

[1] "[A][S][E|A:S][O|E][R|E][T|O:R]"

It is the same as that you would pass to model2network() .
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bn graph objects

The DAGs (and other kind of graphs) are stored in objects of class bn .
Printing the object gives some information about the network structure.

survey.dag

Random/Generated Bayesian network

model:
[A][S][E|A:S][O|E][R|E][T|O:R]

nodes: 6
arcs: 6

undirected arcs: 0
directed arcs: 6

average markov blanket size: 2.67
average neighbourhood size: 2.00
average branching factor: 1.00

generation algorithm: Empty
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D-Separation and Markov Blankets

The dsep() and mb() functions can be used to show how d-separation
and Markov blankets interact in practice. Firstly, node that a node is
never part of its own Markov blanket.

mbE = mb(survey.dag, "E")
"E" %in% mbE

[1] FALSE

Secondly, note that the Markov blanket is minimal and that it makes all
other nodes independent of the target node.

for (node in mbE)
print(dsep(survey.dag, "E", node, setdiff(mbE, c("E", node))))
[1] FALSE
[1] FALSE
[1] FALSE
[1] FALSE

for (node in setdiff(nodes(survey.dag), c("E", mbE)))
print(dsep(survey.dag, "E", node, mbE))
[1] TRUE
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Moral Graphs and CPDAGs

There are functions to compute them:

moral(survey.dag) cpdag(survey.dag)

And if we go back to the survey example, we find that all arcs are compelled and
that the CPDAG is identical to the original DAG.

all.equal(cpdag(survey.dag), survey.dag)

[1] TRUE

compelled.arcs(survey.dag)

from to
[1,] "A" "E"
[2,] "S" "E"
[3,] "E" "O"
[4,] "E" "R"
[5,] "O" "T"
[6,] "R" "T"

And we can observe that:
all.equal(compelled.arcs(survey.dag), directed.arcs(cpdag(survey.dag)))

[1] TRUE
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Choosing the Parameters of the Survey Network

Having the structure saved in survey.dag , we must now think about the
random variables to associate to the nodes. Wemust choose their
sample spaces so that

• we can interpret events easily;

• the chosen events should allow us to express our questions of
interest and should allow the model to express the answers to those
questions;

• there are few enough events that we can specify their probabilities
easily.

A.lv = c("young", "adult", "old")
S.lv = c("M", "F")
E.lv = c("high", "uni")
O.lv = c("emp", "self")
R.lv = c("small", "big")
T.lv = c("car", "train", "other")
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Creating the Parameter Sets

The survey.dag encodes the DAG

modelstring(survey.dag)
[1] "[A][S][E|A:S][O|E][R|E][T|O:R]"

This implies the local probability distributions

P(A, S, E, O, R, T) = P(A)P(S)P(E ∣ A, S)P(O ∣ E)P(R ∣ E)P(T ∣ O, R),

and wemust choose values for the probabilities for each distribution.

P(A) =
⎧{
⎨{⎩

0.30 for young
0.50 for adult
0.20 for old

P(S) = { 0.60 for M
0.40 for F

A.prob = array(c(0.30, 0.50, 0.20), dim = 3, dimnames = list(A = A.lv))
S.prob = array(c(0.60, 0.40), dim = 2, dimnames = list(S = S.lv))
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Creating the Parameter Sets

P(E ∣ A = young, S = M) = { 0.75 for high
0.25 for uni

P(E ∣ A = adult, S = M) = { 0.72 for high
0.28 for uni

P(E ∣ A = old, S = M) = { 0.88 for high
0.12 for uni

P(E ∣ A = young, S = F) = { 0.64 for high
0.36 for uni

P(E ∣ A = adult, S = F) = { 0.70 for high
0.30 for uni

P(E ∣ A = old, S = F) = { 0.90 for high
0.10 for uni

E.prob = array(c(0.75, 0.25, 0.72, 0.28, 0.88, 0.12, 0.64,
0.36, 0.70, 0.30, 0.90, 0.10), dim = c(2, 3, 2),
dimnames = list(E = E.lv, A = A.lv, S = S.lv))
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Creating the Parameter Sets

P(O ∣ E = high) = { 0.96 for emp
0.04 for self

P(O ∣ E = uni) = { 0.92 for emp
0.08 for self

O.prob = array(c(0.96, 0.04, 0.92, 0.08), dim = c(2, 2),
dimnames = list(O = O.lv, E = E.lv))

P(R ∣ E = high) = { 0.25 for small
0.75 for big

P(R ∣ E = uni) = { 0.20 for small
0.80 for big

R.prob = array(c(0.25, 0.75, 0.20, 0.80), dim = c(2, 2),
dimnames = list(R = R.lv, E = E.lv))
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Creating the Parameter Sets

P(T ∣ O = emp, R = small) =
⎧{
⎨{⎩

0.48 for car
0.42 for train
0.10 for other

P(T ∣ O = self, R = small) =
⎧{
⎨{⎩

0.56 for car
0.36 for train
0.08 for other

P(T ∣ O = emp, R = big) =
⎧{
⎨{⎩

0.58 for car
0.24 for train
0.18 for other

P(T ∣ O = self, R = big) =
⎧{
⎨{⎩

0.70 for car
0.21 for train
0.09 for other

T.prob = array(c(0.48, 0.42, 0.10, 0.56, 0.36, 0.08, 0.58,
0.24, 0.18, 0.70, 0.21, 0.09), dim = c(3, 2, 2),
dimnames = list(T = T.lv, O = O.lv, R = R.lv))
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Creating the Parameter Sets

Having encoded all the probabilities, we can save them in a list and
create a bn.fit object that contains both the DAG and the probabilities.

survey.cpt = list(A = A.prob, S = S.prob, E = E.prob, O = O.prob,
R = R.prob, T = T.prob)

survey.bn = custom.fit(survey.dag, survey.cpt)

The information about each variable:

survey.bn$A

Parameters of node A (multinomial distribution)

Conditional probability table:
A

young adult old
0.3 0.5 0.2
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Creating the Parameter Sets

survey.bn$T

Parameters of node T (multinomial distribution)

Conditional probability table:

, , R = small

O
T emp self
car 0.48 0.56
train 0.42 0.36
other 0.10 0.08

, , R = big

O
T emp self
car 0.58 0.70
train 0.24 0.21
other 0.18 0.09
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Plotting the Survey Bayesian Network

graphviz.plot(survey.bn, shape = "ellipse")
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Plotting the Survey Bayesian Network

graphviz.chart(survey.bn)
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Plotting the Survey Bayesian Network

bn.fit.barchart(survey.bn$T)

Conditional Probabilities for Node T

Probabilities
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Case Study: Business Creation

Say we would like to create a model for the following theory from
behavioural economics on business creation based on the attitudes
perspective:

The intention to create a new business would depend on attitudi-
nal evaluation, if someone considers that creating a newbusiness
is apositive thing, he or shewill bemoreprone to carry out the tar-
get behaviour. Additionally, intentions also depend on normative
beliefs. That is to say, intentions depend on the perceived social
pressure related with a particular behaviour.

Since no expert will be able to give us values for the probabilities in the
BN or suggestions about what its structure looks like, we have collected
some information using electronic questionnaires from 1542 university
professors.
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The Questionnaire

The questionnaire contained six sections:
1. demographic data;
2. questions directly related with entrepreneurship phenomena;
3. environment attitudes;
4. obstacles and facilitators;
5. an attitudinal scale;
6. comments and details.

To measure different aspect related with the entrepreneurial attitude we
used scales about perceived obstacles, perceived facilitators,
self-efficacy, locus of control, attitude towards business creation and
normative beliefs. Scores in all scales were individually recorded using
three levels of response.
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The Derived Scales

• perceived obstacles (OBS): “Having to work toomany hours”, “Lack of
experience”, “Ignorance of activity sector”, etc.

• perceived facilitators (FAC): “Have perceived a need in the market”, “The
detection of a business opportunity” or “The availability of personal assets
to invest”, etc.

• self-efficacy (SE), the perceived difficulty to actually carry out a specific
behaviour: “Working under continuous stress, pressure and conflict”, “To
form alliances or partnerships with other companies”, etc.

• locus of control (LC): “If you want, you can easily be an entrepreneur and
starting your own business”, etc.

• attitude towards business creation (ACT): “To what extent do you believe that
these elements are related with the creation of a new company?”, “To what
extent do you like assume it?”, etc.

• normative beliefs (NORM): “Please, think in your family, closest friends and
social environment and indicate the degree to which they are favourable to
the idea that you create a company”, etc.
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A First Try at BN Modelling

From the description of the behavioural theory model, we can venture to
define a DAG for our BNmodel like the following:
progn = model2network(
paste0("[creation|desirability:feasibility][desirability|LC:SE:ACT:NORM]",

"[feasibility|LC:SE:ACT:NORM:FAC:OBS][LC][FAC][OBS][SE][ACT][NORM]"))
graphviz.plot(progn, shape = "ellipse")
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Running Out of Samples

The problems start when we compare the number of probabilities in the
BN with the number of questionnaires we collected. Each variable takes
two to four values:

summary(inted)
creation desirability feasibility
Yes: 480 Yes:882 Very.little.feasible:378
No :1062 No :660 A.little.feasible :672

Feasible :444
A.lot.feasible : 48

LC FAC OBS SE
High :373 Low :561 Low :312 Medium:412
Low :544 High :259 Medium:793 Low :774
Medium:625 Medium:722 High :437 High :356

ACT NORM
Medium:724 High :318
Low :226 Medium:452
High :592 Low :772
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Running Out of Samples

A cursory examination suggests that we do not have enough
questionnaires (1542) compared to the number of probabilities in the BN
(2288):
nparams(progn, inted)

[1] 2288
nrow(inted)

[1] 1542

This means that in practice we cannot possibly observe all the events we
need to define the probability of. Some will not be observed even once!
And then if we estimate their probability with their frequency in the
sample of questionnaires then

P(some event we do not observe) =
zero questionnaires
1542 questionnaires

= 0

which we are pretty sure it is not true.
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How Do We Compute the Number of Probabilities?

How does nparams() compute the number of probabilities?
For each node:
1. find out its parents;

par = parents(progn, "desirability")
par

[1] "ACT" "LC" "NORM" "SE"

2. find out howmany values each parent takes in the data;
par.values = rep(0, length(par))
for (p in seq_along(par))
par.values[p] = nlevels(inted[, par[p]])

3. count howmany combinations;
par.combn = prod(par.values)

4. look up howmany values the node takes;
node.values = nlevels(inted[, "desirability"])

5. multiply these two numbers.
(node.values - 1) * par.combn

[1] 81
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How Do We Compute the Number of Probabilities?

Consider P(creation ∣ feasibility, desirability).

desirability = yes
Very.little A.little Feasible A.lot

yes ? ? ? ?
no ? ? ? ?

desirability = no
Very.little A.little Feasible A.lot

yes ? ? ? ?
no ? ? ? ?

The table has 2 × 4 × 2 cells, but since each column is a conditional
distribution that sums up 1 one probability in each column is fixed to 1−
the sum of the other probabilities in the column.
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How Do We Compute the Number of Probabilities?

ACT 3 − 1 = 2
LC 3 − 1 = 2
NORM 3 − 1 = 2
SE 3 − 1 = 2
FAC 3 − 1 = 2
OBS 3 − 1 = 2
desirability 2 − 1 ×34 = 81
feasibility 4 − 1 ×36 = 2187
creation 2 − 1 ×2 × 4 = 8

total = 2288

The problem is clearly in feasibility , but even if we reduced it to just 2
values we would still have too 729 probabilities to specify. That too
many!
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Diagnostic versus Prognostic Models

In feasibility ≈ 40% of the probabilities are missing values and
another≈ 40% is 0-1 distributions, which clearly is not ideal.

fitted.progn = bn.fit(progn, inted)
ldist = coef(fitted.progn$feasibility)
length(which(is.na(ldist))) / length(ldist)

[1] 0.396
length(which(ldist %in% c(0, 1))) / length(ldist)

[1] 0.397

The only recourse is changing the DAG. progn was built as a prognostic
model in which the causes are on the top and the effects are at the
bottom of the DAG. We could also try the converse: a diagnostic models
in which the effects are on the top and the causes are on the bottom.
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A Diagnostic Model

diagn = model2network(
paste("[creation][desirability|creation][feasibility|creation]",

"[LC|desirability:feasibility][FAC|feasibility][OBS|feasibility]",
"[SE|desirability:feasibility][ACT|desirability:feasibility]",
"[NORM|desirability:feasibility]", sep = ""))

nparams(diagn, inted)
[1] 89

graphviz.plot(diagn, shape = "ellipse")
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Developing the Model

The diagnostic BN has far fewer parameters, and we can estimate them
with reasonable accuracy from the data.

fitted.diagn = bn.fit(diagn, inted)

The bn.fit() function creates a bn.fit object as custom.fit did
earlier; but it learns the probabilities from the data instead of requiring
them as expert knowledge.

fitted.diagn$desirability

Parameters of node desirability (multinomial distribution)

Conditional probability table:

creation
desirability Yes No

Yes 0.727 0.502
No 0.273 0.498
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Job Creation, Goodness of Fit

We now have twomodels on the table. How do we decide which one is
better? Recall that in machine learning wemeasure performance with
the ability of predicting new events.
We canmeasure predictive accuracy by:
1. splitting the 1542 questionnaires into a training set (say, of 1156)

and a validation set (say, of 386);
2. estimating the probabilities in the prognostic BN from the training

set;
3. estimating the probabilities in the diagnostic BN from the training

set;
4. computing the (log-)probability of the test set using the prognostic

BN;
5. computing the (log-)probability of the test set using the diagnostic

BN;
6. comparing the two and pick the BN with the highest one.
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Job Creation, Goodness of Fit

1. training.samples = sample(nrow(inted), 1156)
training.set = inted[training.samples, ]
validation.set = inted[-training.samples, ]

2. progn.fit = bn.fit(progn, training.set)

3. diagn.fit = bn.fit(diagn, training.set)

4. logLik(progn.fit, validation.set)
[1] -3170

5. logLik(diagn.fit, validation.set)
[1] -3269

6. progn.fit wins!

But does that make sense? progn.fit was supposed to be the worse of
the two BNs...
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Job Creation, Goodness of Fit

An alternative measure of predictive accuracy is the probability of
predicting creation correctly: that is key in proving our theory is valid.

predicted = predict(progn.fit, node = "creation", data = validation.set,
method = "bayes-lw")

prop.table(table(predicted, validation.set[, "creation"]))

predicted Yes No
Yes 0.138 0.142
No 0.154 0.565

predicted = predict(diagn.fit, node = "creation", data = validation.set,
method = "bayes-lw")

prop.table(table(predicted, validation.set[, "creation"]))

predicted Yes No
Yes 0.145 0.130
No 0.153 0.573

Predictive accuracy is similar for both models, so we can choose diagn
which is much simpler.
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A Better Way: Cross-Validation

Youmay ask: what if I randomly pick a “bad” training sample? After all, if
we split the data just once we cannot be sure if we are getting a high/low
predictive accuracy just by chance.

The answer to this question is cross-validation:
1. Split the data into 𝑘 folds (usually 10) of equal size.

2. For each fold in turn:
2.1 merge the other 𝑘 − 1 folds into a training set;

2.2 take the chosen fold to be the validation set;

2.3 learn the BN from the training set;

2.4 estimate predictive accuracy on the validation set.

3. Take the average of all the 𝑘 estimates of predictive accuracy.

PROS: more reliable measures of predictive accuracy.
CONS: it takes more time to run.
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Cross-Validation and Predictive Accuracy

The function that implements cross-validation is bn.cv() , which
requires a data set, a network, and a definition of what measure of
predictive accuracy to use.

bn.cv(inted, progn, loss = "pred-lw", loss.args = list(target = "creation"))

k-fold cross-validation for Bayesian networks

target network structure:
[ACT][FAC][LC][NORM][OBS][SE]
[desirability|ACT:LC:NORM:SE]
[feasibility|ACT:FAC:LC:NORM:OBS:SE]
[creation|desirability:feasibility]

number of folds: 10
loss function:

Classification Error (Posterior, disc.)
training node: creation
expected loss: 0.265
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Cross-Validation and Predictive Accuracy

bn.cv(inted, diagn, loss = "pred-lw", loss.args = list(target = "creation"))

k-fold cross-validation for Bayesian networks

target network structure:
[creation][desirability|creation][feasibility|creation]
[ACT|desirability:feasibility][FAC|feasibility]
[LC|desirability:feasibility]
[NORM|desirability:feasibility][OBS|feasibility]
[SE|desirability:feasibility]

number of folds: 10
loss function:

Classification Error (Posterior, disc.)
training node: creation
expected loss: 0.274

The prediction error (that is, the proportion of questionnaires for which
the prediction is wrong) is virtually identical for progn and diagn . Hence
we still choose to user diagn for its simplicity.
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An Example: Domotics

Suppose we have a house in which we want to install automatic windows
that open and close depending on outside conditions:

• temperature (Tout);

• sunlight (Sun);
to optimise inside conditions:

• CO2 (CO2);

• temperature (Tin);

• humidity (Hin).

Our goal is to program themicrocontroller using a BN that opens and
closes the windows (W) to maintain optimal environment inside the
house.
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An Example: Domotics
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Defining the DAG

In keeping with the idea that we can use causal reasoning to define the
DAG of a BN, we observe that:

• the outside temperature contributes to the inside temperature;

• the solar radiation and the outside temperature determine whether
it is a good idea to open the windows;

• whether windows are open influences all the inside conditions.

win.dag = model2network("[Tout][Sun][W|Tout:Sun][Tin|Tout:W][Hin|W][CO2|W]")
graphviz.plot(win.dag, shape = "ellipse")
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Defining the Sample Spaces

We should then decide which values each variable can take, with an eye
towards keeping the BN simple (since we have to enter all the
probabilities next!).

• Tout and Tin : <18 , 18-24 , >24 .

• Sun : low or high .

• W : open or closed .

• CO2 : low , medium , high .

• Hin : low , high .

The DAG givens us the decomposition

P(Tout, Sun, W, Tin, CO2, Hin) = P(Tout)P(Sun)×
× P(W ∣ Tout, Sun)P(Tin ∣ Tout, W)P(CO2 ∣ W)P(Hin ∣ W)

which implies 2 + 1 + 6 + 12 + 4 + 2 = 37 probabilities.
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Specifying the Probabilities

The probabilities of the outside weather conditions can be read from any
number of weather websites (or even Wikipedia!).

T.lv = c("<18", "18-24", ">24")
Sun.lv = c("low", "high")

Tout.prob = array(c(0.20, 0.70, 0.10), dim = 3, dimnames = list(Tout = T.lv))
Tout.prob

Tout
<18 18-24 >24
0.2 0.7 0.1

Sun.prob = array(c(0.70, 0.30), dim = 2, dimnames = list(Sun = Sun.lv))
Sun.prob

Sun
low high
0.7 0.3

(These would be sensible values for early summer in the UK, the effects
of global warming notwithstanding.)
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Specifying the Probabilities

If it is very cold or very hot outside, windows should be closed; and they
should be closed if the sunlight is low and it’s cold or if the sunlight is
strong and the temperature is high.

W.lv = c("open", "closed")

W.prob = array(c(0.10, 0.90, 0.70, 0.30, 0.90, 0.10,
0.20, 0.80, 0.50, 0.50, 0.10, 0.90), dim = c(2, 3, 2),

dimnames = list(W = W.lv, Tout = T.lv, Sun = Sun.lv))
W.prob

, , Sun = low

Tout
W <18 18-24 >24
open 0.1 0.7 0.9
closed 0.9 0.3 0.1

, , Sun = high

Tout
W <18 18-24 >24
open 0.2 0.5 0.1
closed 0.8 0.5 0.9
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Specifying the Probabilities

The inside temperature should be close to the outside temperature if
windows are open, or be hotter. If windows are closed then the inside
might be hotter than the outside temperature.
Tin.prob = array(c(0.25, 0.70, 0.05, 0.20, 0.60, 0.20, 0, 0.20, 0.80,

0.08, 0.90, 0.02, 0.10, 0.70, 0.20, 0, 0.50, 0.50),
dim = c(3, 3, 2),
dimnames = list(Tin = T.lv, Tout = T.lv, W = W.lv))

Tin.prob
, , W = open

Tout
Tin <18 18-24 >24
<18 0.25 0.2 0.0
18-24 0.70 0.6 0.2
>24 0.05 0.2 0.8

, , W = closed

Tout
Tin <18 18-24 >24
<18 0.08 0.1 0.0
18-24 0.90 0.7 0.5
>24 0.02 0.2 0.5 51



Specifying the Probabilities

Finally both inside humidity and CO2 improve if the windows are open
and they let in some fresh air.

Hin.lv = Sun.lv = c("low", "high")
CO2.lv = c("low", "medium", "high")

CO2.prob = array(c(0.05, 0.30, 0.65, 0.20, 0.40, 0.40), dim = c(3, 2),
dimnames = list(CO2 = CO2.lv, W = W.lv))

CO2.prob
W

CO2 open closed
low 0.05 0.2
medium 0.30 0.4
high 0.65 0.4

Hin.prob = array(c(0.30, 0.70, 0.50, 0.50), dim = c(2, 2),
dimnames = list(Hin = Hin.lv, W = W.lv))

Hin.prob
W

Hin open closed
low 0.3 0.5
high 0.7 0.5
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Building the BN from the DAG and the Probabilities

Finally, we put the DAG and the probabilities together to build the BN in a
bn.fit object.

win.bn = custom.fit(win.dag, list(Tout = Tout.prob, Sun = Sun.prob,
W = W.prob, Tin = Tin.prob, CO2 = CO2.prob, Hin = Hin.prob))

We defined this BN for the most part using common sense. We should
now check that:
1. it describes what it is modelling in a realistic way;
2. it is not overly sensitive to small changes in the probabilities we

specified.
These are fundamental sanity checks that ensure the BN is a
well-behavedmachine learning model.
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Is it Realistic?

in.out = cpdist(win.bn, nodes = "W",
evidence = (Tout == "18-24") & (Tin == ">24"))

prop.table(table(in.out))
in.out
open closed
0.625 0.375

If the temperature outside is between 18∘ and 24∘, and the temperature
inside is above 24∘, we want the window to be open to lower the inside
temperature.

in.out = cpdist(win.bn, nodes = "W",
evidence = (Tout == "<18") & (Tin == ">24"))

prop.table(table(in.out))
in.out
open closed
0.321 0.679

However, if it is very cold outside we want the window to be open but
less so because opening it would create a very uncomfortable draft!
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Is it Realistic?

in.out = cpdist(win.bn, nodes = "W",
evidence = (Tout == "18-24") & (Tin == "18-24"))

prop.table(table(in.out))
in.out
open closed
0.588 0.412

If both the inside and outside temperatures are comfortable, we want the
window to be openmore than we do not, just to keep the air fresh; but
can keep it closed nearly 40% of the time.

in.out = cpdist(win.bn, nodes = "W",
evidence = (Tout == ">24") & (Tin == "18-24"))

prop.table(table(in.out))
in.out
open closed
0.395 0.605

If the outside temperature is both hot and hotter than the inside
temperature, keeping the windows closed helps keeping the heat out.
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Is it Realistic?

in.out = cpdist(win.bn, nodes = "W",
evidence = (Tout == "18-24") & (Tin == "<18"))

prop.table(table(in.out))
in.out
open closed
0.775 0.225

Finally, if the temperature outside is pleasant but it is cold inside, wemay
want to open the windows to make it more comfortable.

in.co2 = cpdist(win.bn, nodes = "W",
evidence = (Hin == "high") & (CO2 == "high"))

prop.table(table(in.co2))
in.co2
open closed
0.728 0.272

If we have high humidity or CO2 inside the house, wemay want to open
the windows and refresh the air.
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Is it Realistic?

in.co2 = cpdist(win.bn, nodes = "W", evidence = (Hin == "high") & (CO2 == "low"))
prop.table(table(in.co2))

in.co2
open closed
0.266 0.734

in.co2 = cpdist(win.bn, nodes = "W", evidence = (Hin == "low") & (CO2 == "high"))
prop.table(table(in.co2))

in.co2
open closed
0.551 0.449

If CO2 is high, opening the windowmay help; less so if the only problem
is humidity.

in.co2 = cpdist(win.bn, nodes = "W", evidence = (Hin == "low") & (CO2 == "low"))
prop.table(table(in.co2))

in.co2
open closed
0.15 0.85

If both humidity and CO2 are low, we are fine keeping the windows
closed.
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Is it Realistic?

all = cpdist(win.bn, nodes = "W",
evidence = (Hin == "low") & (CO2 == "low") &

(Tin == "18-24") & (Tout == ">24"), n = 10^6)
prop.table(table(all))

all
open closed

0.0939 0.9061

If, on top of having low humidity and CO2, the outside temperature is
very hot we definitely want to keep the windows closed!

all = cpdist(win.bn, nodes = "W",
evidence = (Hin == "high") & (CO2 == "high") &

(Tin == "18-24") & (Tout == ">24"), n = 10^6)
prop.table(table(all))

all
open closed
0.639 0.361

Whereas if they are both high wemay want to open the window even if it
is hot outside.
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Is it Realistic?

We could keep going like this for a while more, querying the model and
checking that we get sensible answers. The general idea is:

1. Not all possible events have a corresponding probability in the
probability tables associated with the various nodes; but

2. we should make sure that (many of) those events are assigned
realistic probabilities.

3. We can query the BN and check that it makes the right choices in
different scenarios, but giving high probabilities to what we
consider the right decisions to make.

4. If that is not the case, we can go back to the drawing board and
rethink the structure and the probabilities we created the BN from.
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Sensitivity Analysis

The general idea behind sensitivity analysis is that:
1. There is always some uncertainty in the information that we use to

create a machine learning model because:
• if we ask different experts, wemay get different probabilities and

different DAGs for the samemodel;

• if we learn the model from data, collecting data again and re-learning
the model will give us a somewhat different model because the data
will be somewhat different.

2. Somewhat different models introduce uncertainty in the decisions
and the conditional probabilities we get in response to queries,
because models will not be numerically identical.

3. Ideally, small changes in the model should produce small changes
in the decisions the model makes. In real-world applications things
tend to change smoothly, so a small change in one variable should
only produce a small change in a few other variables.
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Sensitivity Analysis

Say that wemake a small change to the relationship between inside and
outside temperatures because we got it wrong the first time.

Tin.prob
, , W = open

Tout
Tin <18 18-24 >24
<18 0.25 0.2 0.0
18-24 0.70 0.6 0.2
>24 0.05 0.2 0.8

, , W = closed

Tout
Tin <18 18-24 >24
<18 0.08 0.1 0.0
18-24 0.90 0.7 0.5
>24 0.02 0.2 0.5

→

Tin.prob
, , W = open

Tout
Tin <18 18-24 >24
<18 0.25 0.2 0.05
18-24 0.70 0.6 0.25
>24 0.05 0.2 0.70

, , W = closed

Tout
Tin <18 18-24 >24
<18 0.08 0.1 0.0
18-24 0.90 0.7 0.5
>24 0.02 0.2 0.5
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Sensitivity Analysis

Having made a small change to Tin , we create the updated BN

win.bn2 = custom.fit(win.dag, list(Tout = Tout.prob, Sun = Sun.prob,
W = W.prob, Tin = Tin.prob, CO2 = CO2.prob, Hin = Hin.prob))

re-run all the queries and compare the results.

before after difference decision

0.669, 0.331 0.668, 0.332 0.001 same
0.25, 0.75 0.286, 0.714 0.036 same

0.604, 0.396 0.61, 0.39 0.005 same
0.421, 0.579 0.546, 0.454 0.125 not
0.772, 0.228 0.79, 0.21 0.018 same
0.729, 0.271 0.711, 0.289 0.018 same

0.27, 0.73 0.325, 0.675 0.055 same
0.528, 0.472 0.52, 0.48 0.009 same
0.147, 0.853 0.158, 0.842 0.012 same
0.089, 0.911 0.127, 0.873 0.038 same
0.637, 0.363 0.689, 0.311 0.052 same
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Sensitivity Analysis

We changed the probabilities Tin bymoving a 10% probability mass in a
single conditional distribution; it is fairly large change. Even so, the
largest change in the probabilities returned by the queries is 12.5%,
about the same amount.

The decision of whether to open the windows is the same before and
after we change Tin , with the only exception of

in.out = cpdist(win.bn, nodes = "W",
evidence = (Tout == ">24") & (Tin == "18-24"))

prop.table(table(in.out))

which is understandable since the evidence is exactly the conditional
distribution we changed.

What does it mean? It means that the BN is robust to perturbations up
10% in Tin/Tout .
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How Sensitive is Sensitive?

in.out = cpdist(win.bn, nodes = "W",
evidence = (Tout == ">24") & (Tin == "18-24"), n = 10^6)

orig = prop.table(table(in.out))

diff = seq(from = 0.01, to = 0.20, by = 0.01)
query.prob = rep(0, length(diff))

for (i in seq_along(diff)) {

new.bn = win.bn
cpt = coef(new.bn$Tin)
cpt[, ">24" , "open"] = cpt[, ">24" , "open"] +

c(diff[i]/2, diff[i]/2, -diff[i])
new.bn$Tin = cpt

in.out = cpdist(new.bn, nodes = "W",
evidence = (Tout == ">24") & (Tin == "18-24"), num = 10^6)

query.prob[i] = prop.table(table(in.out))[1]

}#FOR
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How Sensitive is Sensitive?
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It’s a matter of degree...
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Revisiting Domotics: a Dynamic Model

The BN we run on our microcontroller interact continuously with the
surrounding environment: as it registers some inside temperature,
humidity and CO2, it may decide to open or close the window. After some
time all of these adjust andmove closer to the outside weather
conditions; at that point the BNmay decide to close or open the
windows depending on how the situation is at that time.

Framing the model in this way suggests that we want a dynamic BN that
explicitly models the passage of time and how the variables interact at
different time points.

A BN that incorporates time is called a dynamic BN (as opposed to a
static BN that does not).
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Revisiting Domotics: a Dynamic Model

A naive approach to construct such a BN would be to duplicate all nodes
and link themwith arcs across time.

win.dyn = model2network(
paste0("[Tout_0][Sun_0][W_0|Tout_0:Sun_0][Tin_0|Tout_0:W_0][Hin_0|W_0]",

"[CO2_0|W_0][Tout_1|Tout_0][Sun_1|Sun_0][W_1|W_0:Tout_1:Sun_1]",
"[Tin_1|Tin_0:Tout_1:W_1][Hin_1|Hin_0:W_1][CO2_1|CO2_0:W_1]"))

nodes.t0 = grep("_0$", nodes(win.dyn), value = TRUE)
nodes.t1 = grep("_1$", nodes(win.dyn), value = TRUE)
graphviz.plot(win.dyn, shape = "ellipse", groups = list(nodes.t0, nodes.t1),
highlight = list(nodes = nodes.t1, fill = "palegreen2", col = "darkgreen"))

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1

Tout_0

Tout_1W_0

W_1
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Do We Really Need All These Arcs?

We probably do not need W_0 → W_1 ; implying that we do not care if the
windows have been open or closed since the previous time point when
deciding to open or close them in the current time point.

win.dyn = drop.arc(win.dyn, from = "W_0", to = "W_1")

The other arcs all make sense in various ways. But they also make the BN
muchmore complex. All the new *_1 variables require new tables of
probabilities, which contain 2-3 times as many probabilities:

37 + 2 × 1⏟
Sun_1

+3 × 2⏟
Tout_1

+3 × 2 × 2 × 1⏟⏟⏟⏟⏟⏟⏟
W_1

+

2 × 2 × 1⏟
Hin_1

+2 × 3 × 2⏟
CO2_1

+3 × 2 × 3 × 2⏟⏟⏟⏟⏟⏟⏟
Tin_1

= 110.
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Do We Really Need All These Arcs?

Wewould like to use this dynamic BN to open and close the windows.

Why do we want to do that? Because in the first time point the air inside
the house is hot/humid/stuffy, and if we open the windows the air will
get better by the second time point.

Hence we can assume that we know all the values of the variables in the
first time point from the sensors attached to the microcontroller, and we
can just concentrate onmodelling the dependencies between the
variables in the first time point and the variables in the second time
point.

(If we condition on all variables in the first time point, we do not really
care about how they interact with each other!)
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A Simpler Dynamic BN

This design choice reduces the number of arcs quite a bit:

win.dyn = model2network(paste0("[Tout_0][Sun_0][W_0][Tin_0][Hin_0][CO2_0]",
"[Tout_1|Tout_0][Sun_1|Sun_0][W_1|Tout_1:Sun_1][Tin_1|Tin_0:Tout_1:W_1]",
"[Hin_1|Hin_0:W_1][CO2_1|CO2_0:W_1]"))

graphviz.plot(win.dyn, shape = "ellipse", highlight = list(nodes = nodes.t1,
fill = "palegreen2", col = "darkgreen"))
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But having W_0 as an isolated nodemakes no sense...
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Redefining the Meaning of W_0 / W_1

So, we just drop W_1 and keep W_0 ; opening the windows in the first time
point affects CO2_1 , Hin_1 , Tin_1 instead of CO2_0 , Hin_0 , Tin_0 .

win.dyn = model2network(paste0("[Tout_0][Sun_0][W_0][Tin_0][Hin_0][CO2_0]",
"[Tout_1|Tout_0][Sun_1|Sun_0][Tin_1|Tin_0:Tout_1:W_0:Sun_1]",
"[Hin_1|Hin_0:W_0][CO2_1|CO2_0:W_0]"))

nodes.t1 = grep("_1$", nodes(win.dyn), value = TRUE)
graphviz.plot(win.dyn, shape = "ellipse", highlight = list(nodes = nodes.t1,
fill = "palegreen2", col = "darkgreen"))
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Specifying the Probabilities

Given this DAG, the probabilities we need to specify are:
1. the initial probabilities of the states of each variable at time 0 (the

*_0 nodes);
2. the transition probabilities controlling the states of each variable at

time 1 given the parents (which are at both time 0 and time 1).

Overall, the number of probabilities of this latest incarnation of the BN is:

2⏟
CO2_0

+2 × 3 × 2⏟
CO2_1

+ 1⏟
W_0

+ 1⏟
Hin_0

+1 × 2 × 2⏟
Hin_1

+ 1⏟
Sun_0

+1 × 2⏟
Sun_1

+

2⏟
Tin_0

+2 × 3 × 3 × 3⏟⏟⏟⏟⏟⏟⏟
Tin_1

+ 2⏟
Tout_0

+2 × 3⏟
Tout_1

= 87
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Transitions: Outside Temperature and Sunlight

Assuming that time 0 and time 1 are close-ish in time, we assign high
probabilities to the outside temperature and sunlight to be about the
same while allowing them to change.

Tout_0.prob = array(c(0.20, 0.70, 0.10), dim = 3,
dimnames = list(Tout_0 = T.lv))

Tout_1.prob = array(c(0.80, 0.19, 0.01, 0.10, 0.80, 0.10, 0.01, 0.19, 0.80),
dim = c(3, 3), dimnames = list(Tout_1 = T.lv, Tout_0 = T.lv))

Tout_1.prob
Tout_0

Tout_1 <18 18-24 >24
<18 0.80 0.1 0.01
18-24 0.19 0.8 0.19
>24 0.01 0.1 0.80

Sun_0.prob = array(c(0.70, 0.30), dim = 2, dimnames = list(Sun_0 = Sun.lv))
Sun_1.prob = array(c(0.70, 0.30, 0.30, 0.70), dim = c(2, 2),

dimnames = list(Sun_1 = Sun.lv, Sun_0 = Sun.lv))
Sun_1.prob

Sun_0
Sun_1 low high
low 0.7 0.3
high 0.3 0.7
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Transitions: CO2

CO2_0.prob = array(c(0.15, 0.50, 0.35), dim = 3,
dimnames = list(CO2_0 = CO2.lv))

CO2_1.prob = array(c(0.99, 0.01, 0, 0.60, 0.40, 0, 0.30, 0.69, 0.01,
0.80, 0.20, 0, 0.10, 0.70, 0.20, 0.01, 0.14, 0.85),

dim = c(3, 3, 2),
dimnames = list(CO2_1 = CO2.lv, CO2_0 = CO2.lv, W_0 = W.lv))

CO2_1.prob
, , W_0 = open

CO2_0
CO2_1 low medium high
low 0.99 0.6 0.30
medium 0.01 0.4 0.69
high 0.00 0.0 0.01

, , W_0 = closed

CO2_0
CO2_1 low medium high
low 0.8 0.1 0.01
medium 0.2 0.7 0.14
high 0.0 0.2 0.85

If the windows are open, CO2
should go down; if they are closed
it should go up.

In either case, CO2 may stay the
same with a reasonably high
probability.
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Transitions: Humidity

Hin_0.prob = array(c(0.50, 0.50), dim = 2, dimnames = list(Hin_0 = Hin.lv))
Hin_1.prob = array(c(0.90, 0.10, 0.30, 0.70, 0.70, 0.30, 0.01, 0.99),

dim = c(2, 2, 2),
dimnames = list(Hin_1 = Hin.lv, Hin_0 = Hin.lv, W_0 = W.lv))

Hin_1.prob
, , W_0 = open

Hin_0
Hin_1 low high
low 0.9 0.3
high 0.1 0.7

, , W_0 = closed

Hin_0
Hin_1 low high
low 0.7 0.01
high 0.3 0.99

If the windows are open, humidity
inside the house may stay low or
go down (if high).

If the windows are closed,
humidity it should go up or stay
high.

In either case, humidity may stay
the same as well.
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Transitions: Inside Temperature

When we talk about large tables of probabilities being unwieldy or
unfeasible to fill, this is what wemean:
Tin_0.prob = array(c(0.10, 0.85, 0.05), dim = 3, dimnames = list(Tin_0 = T.lv))
Tin_1.prob = array(c(0.90, 0.10, 0, 0.50, 0.50, 0, 0.20, 0.70, 0.10,

0.90, 0.10, 0, 0.10, 0.90, 0, 0, 0.20, 0.80,
0.85, 0.15, 0, 0.45, 0.55, 0, 0.10, 0.75, 0.15,
0.85, 0.15, 0, 0.05, 0.90, 0.05, 0, 0.05, 0.95,
0.10, 0.90, 0, 0.10, 0.80, 0.10, 0, 0.50, 0.50,
0.50, 0.50, 0, 0, 0.90, 0.10, 0, 0.10, 0.90,
0.05, 0.90, 0.05, 0.05, 0.80, 0.15, 0, 0.45, 0.55,
0.45, 0.50, 0.05, 0, 0.85, 0.15, 0, 0.05, 0.95,
0.10, 0.70, 0.20, 0, 0.90, 0.10, 0, 0.50, 0.50,
0.05, 0.65, 0.30, 0, 0.50, 0.50, 0, 0.20, 0.80,
0.05, 0.70, 0.25, 0, 0.85, 0.15, 0, 0.45, 0.55,
0, 0.65, 0.35, 0, 0.45, 0.55, 0, 0.15, 0.85),

dim = c(3, 3, 2, 2, 3),
dimnames = list(Tin_1 = T.lv, Tin_0 = T.lv, W_0 = W.lv,

Sun_1 = Sun.lv, Tout_1 = T.lv))

The overall pattern is that if windows are open, inside temperature will
move towards the outside temperature; but if windows are closed,
temperature can only go up. 76



Transitions: Inside Temperature

Tin_1.prob[, , "open", "low", ]
, , Tout_1 = <18

Tin_0
Tin_1 <18 18-24 >24
<18 0.9 0.5 0.2
18-24 0.1 0.5 0.7
>24 0.0 0.0 0.1

, , Tout_1 = 18-24

Tin_0
Tin_1 <18 18-24 >24
<18 0.1 0.1 0.0
18-24 0.9 0.8 0.5
>24 0.0 0.1 0.5

, , Tout_1 = >24

Tin_0
Tin_1 <18 18-24 >24
<18 0.1 0.0 0.0
18-24 0.7 0.9 0.5
>24 0.2 0.1 0.5

Tin_1.prob[, , "open", "high", ]
, , Tout_1 = <18

Tin_0
Tin_1 <18 18-24 >24
<18 0.85 0.45 0.10
18-24 0.15 0.55 0.75
>24 0.00 0.00 0.15

, , Tout_1 = 18-24

Tin_0
Tin_1 <18 18-24 >24
<18 0.05 0.05 0.00
18-24 0.90 0.80 0.45
>24 0.05 0.15 0.55

, , Tout_1 = >24

Tin_0
Tin_1 <18 18-24 >24
<18 0.05 0.00 0.00
18-24 0.70 0.85 0.45
>24 0.25 0.15 0.55
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Transitions: Inside Temperature

Tin_1.prob[, , "closed", "low", ]
, , Tout_1 = <18

Tin_0
Tin_1 <18 18-24 >24
<18 0.9 0.1 0.0
18-24 0.1 0.9 0.2
>24 0.0 0.0 0.8

, , Tout_1 = 18-24

Tin_0
Tin_1 <18 18-24 >24
<18 0.5 0.0 0.0
18-24 0.5 0.9 0.1
>24 0.0 0.1 0.9

, , Tout_1 = >24

Tin_0
Tin_1 <18 18-24 >24
<18 0.05 0.0 0.0
18-24 0.65 0.5 0.2
>24 0.30 0.5 0.8

Tin_1.prob[, , "closed", "high", ]
, , Tout_1 = <18

Tin_0
Tin_1 <18 18-24 >24
<18 0.85 0.05 0.00
18-24 0.15 0.90 0.05
>24 0.00 0.05 0.95

, , Tout_1 = 18-24

Tin_0
Tin_1 <18 18-24 >24
<18 0.45 0.00 0.00
18-24 0.50 0.85 0.05
>24 0.05 0.15 0.95

, , Tout_1 = >24

Tin_0
Tin_1 <18 18-24 >24
<18 0.00 0.00 0.00
18-24 0.65 0.45 0.15
>24 0.35 0.55 0.85
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Building the New Dynamic BN

The last probability distribution we need is that of W_0 , which does not
really matter since in using the model we will always fix this variable to
open or closed .

W_0.prob = array(c(0.5, 0.5), dim = 2, dimnames = list(W_0 = W.lv))

Finally, we build the BN by combining the DAG and the probability
distributions using custom.fit() .

win.dbn = custom.fit(win.dyn, list(Tout_0 = Tout_0.prob, Tout_1 = Tout_1.prob,
Sun_0 = Sun_0.prob, Sun_1 = Sun_1.prob, W_0 = W_0.prob,
Tin_0 = Tin_0.prob, Tin_1 = Tin_1.prob, CO2_0 = CO2_0.prob,
CO2_1 = CO2_1.prob, Hin_0 = Hin_0.prob, Hin_1 = Hin_1.prob))

Now, we should check that BN in win.dbn provides sensible answers
when queried before putting it to use on the microcontroller.
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Sanity Checking the Dynamic BN

First, let’s check what the dynamic BN tells us about Tin_1 fromwhat we
know at time 0. If the room is cold, and outside is warm, the roomwill
warm up.

in.out = cpdist(win.dbn, nodes = "Tin_1",
evidence = (Tin_0 == "<18") & (Tout_0 == "18-24"))

prop.table(table(in.out))
in.out

<18 18-24 >24
0.3291 0.6154 0.0556

If the room is cold and outside is hot, it is more likely to warm up and can
possibly become hot.

in.out = cpdist(win.dbn, nodes = "Tin_1",
evidence = (Tin_0 == "<18") & (Tout_0 == ">24"))

prop.table(table(in.out))
in.out

<18 18-24 >24
0.0547 0.7188 0.2266
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Sanity Checking the Dynamic BN

The converse also holds: if the room is hot and outside is cold, there is
about 50% chance that it will get cooler.

in.out = cpdist(win.dbn, nodes = "Tin_1",
evidence = (Tin_0 == ">24") & (Tout_0 == "<18"))

prop.table(table(in.out))
in.out

<18 18-24 >24
0.0784 0.3922 0.5294

Finally, if the inside and outside temperature are both temperate then
there is no change with high probability.

in.out = cpdist(win.dbn, nodes = "Tin_1",
evidence = (Tin_0 == "18-24") & (Tout_0 == "18-24"))

prop.table(table(in.out))
in.out

<18 18-24 >24
0.0631 0.8051 0.1318
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Sanity Checking the Dynamic BN

Contrast the effect of opening the windowwith keeping it closed: Tin_1
is muchmore likely to converge to the outside temperature if the window
is open. Which makes sense.

in.out = cpdist(win.dbn, nodes = "Tin_1",
evidence = (Tin_0 == "<18") & (Tout_0 == "18-24") & (W_0 == "open"))

prop.table(table(in.out))
in.out

<18 18-24 >24
0.1499 0.8098 0.0403

in.out = cpdist(win.dbn, nodes = "Tin_1",
evidence = (Tin_0 == "<18") & (Tout_0 == "18-24") & (W_0 == "closed"))

prop.table(table(in.out))
in.out

<18 18-24 >24
0.4721 0.4721 0.0557

This is also true if outside is cooler than inside...
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Sanity Checking the Dynamic BN

... if we open the window the room is more likely to cool down than if the
window is closed.

in.out = cpdist(win.dbn, nodes = "Tin_1",
evidence = (Tin_0 == ">24") & (Tout_0 == "18-24") & (W_0 == "open"))

prop.table(table(in.out))
in.out

<18 18-24 >24
0.0318 0.4904 0.4777

in.out = cpdist(win.dbn, nodes = "Tin_1",
evidence = (Tin_0 == ">24") & (Tout_0 == "18-24") & (W_0 == "closed"))

prop.table(table(in.out))
in.out
<18 18-24 >24

0.000 0.124 0.876

Is the same true for humidity and CO2?
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Sanity Checking the Dynamic BN

prop.table(table(cpdist(win.dbn, nodes = "Hin_1",
evidence = (Hin_0 == "low") & (W_0 == "open"))))

low high
0.892 0.108

prop.table(table(cpdist(win.dbn, nodes = "Hin_1",
evidence = (Hin_0 == "low") & (W_0 == "closed"))))

low high
0.706 0.294

prop.table(table(cpdist(win.dbn, nodes = "Hin_1",
evidence = (Hin_0 == "high") & (W_0 == "open"))))

low high
0.299 0.701

prop.table(table(cpdist(win.dbn, nodes = "Hin_1",
evidence = (Hin_0 == "high") & (W_0 == "closed"))))

low high
0.0104 0.9896

The probability of low is always higher if the windows are closed. 84



Sanity Checking the Dynamic BN

prop.table(table(cpdist(win.dbn, nodes = "CO2_1",
evidence = (CO2_0 == "low") & (W_0 == "open"))))

low medium high
0.9802 0.0198 0.0000

prop.table(table(cpdist(win.dbn, nodes = "CO2_1",
evidence = (CO2_0 == "low") & (W_0 == "closed"))))

low medium high
0.785 0.215 0.000

prop.table(table(cpdist(win.dbn, nodes = "CO2_1",
evidence = (CO2_0 == "high") & (W_0 == "open"))))

low medium high
0.29375 0.69650 0.00975

prop.table(table(cpdist(win.dbn, nodes = "CO2_1",
evidence = (CO2_0 == "high") & (W_0 == "closed"))))

low medium high
0.0161 0.1348 0.8491

Same for CO2. 85



Sanity Checking: Accidental Dependencies?

We expect humidity and CO2 to be independent, and they actually are
since they are d-separated in the dynamic BN. (The small differences in
the probabilities are simulation noise.)
hin.co2 = rbn(win.dbn, 1000)[, c("Hin_0", "CO2_0")]
prop.table(table(hin.co2))

CO2_0
Hin_0 low medium high
low 0.080 0.252 0.194
high 0.076 0.222 0.176

dsep(win.dbn, "Hin_0", "CO2_0")
[1] TRUE

Same for humidity and inside temperature.
hin.tin = rbn(win.dbn, 1000)[, c("Hin_0", "Tin_0")]
prop.table(table(hin.tin))

Tin_0
Hin_0 <18 18-24 >24
low 0.046 0.418 0.016
high 0.058 0.439 0.023

dsep(win.dbn, "Hin_0", "Tin_0")
[1] TRUE 86



Sanity Checking: Accidental Dependencies?

However, while Hin_0 and CO2_0 are independent, it turns out that
Hin_1 and CO2_1 are not!

hin.co2 = rbn(win.dbn, 1000)[, c("Hin_1", "CO2_1")]
prop.table(table(hin.co2))

CO2_1
Hin_1 low medium high
low 0.203 0.207 0.061
high 0.183 0.227 0.119

dsep(win.dbn, "Hin_1", "CO2_1")
[1] FALSE

This is not unexpected: they have W_0 as a common parent. Hence unless
we condition on W_0 , there is an open path between Hin_1 and CO2_1
going through W_0 which makes the nodes not graphically separated.

This makes sense intuitively: if the windows are open, both humidity and
CO2 go down, and if they are closed both go up.
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Sanity Checking: Accidental Dependencies?

If we condition on W_0 , Hin_1 and CO2_1 become graphically separated
and therefore they are independent by definition.

dsep(win.dbn, "Hin_1", "CO2_1", "W_0")
[1] TRUE

This again makes sense intuitively: if we do not knowwhether the
windows are open or not, we observe that humidity and CO2 go up and
down simultaneously and therefore wemay think they influence each
other. But if we know that the windows are open, then we realise that
that is not the case and that both humidity and CO2 go down because
fresh air is coming in. And if the windows are closed they build up.
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Extending a Dynamic BN Over More Time Points

Recall that the task we are fitting this dynamic model for is to put it on a
microcontroller to automatically open and close the windows. We likely
would want to open them if it is too hot inside the house, or if CO2 is too
high so the air is stuffy; and to close them if it is too cold.

A the most basic level, this means that wemust predict inside
temperature and CO2 for time 1 given what we know at time 0. Like this:

pred.values = cpdist(win.dbn, nodes = c("Tin_1", "CO2_1"), method = "lw",
evidence = list(CO2_0 = "high", Hin_0 = "high", Sun_0 = "high",

Tin_0 = "18-24", Tout_0 = "<18", W_0 = "open"))
values.prob = prop.table(table(pred.values))
values.prob

CO2_1
Tin_1 low medium high
<18 0.1225 0.2575 0.0028
18-24 0.1780 0.4037 0.0064
>24 0.0089 0.0200 0.0002

89



Extending a Dynamic BN Over More Time Points

Having the window open, the dynamic BN tells us that:

• The best result would be Tin_1 = 18-24 and CO2_1 = low , which is
predicted to happen with probability 0.178.

• Themost likely outcome is Tin_1 = 18-24 and CO2_1 = medium with
probability 0.404.

• The probability of the house getting too hot or for CO2 to become too
high are negligible (0.029 and 0.009 respectively).

• The house can possibly get too cold with probability 0.383, and we do
not want that to happen.

But how can we knowwhen to close the windows? The dynamic BN can
only predict one time point forward; it only models the transition
between a generic time point 0 and the following time point 1.
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Extending a Dynamic BN Over More Time Points

But what if we assume that the same dynamic BN is a valid model for the
transition between time 1 and time 2? Then we can:

• take the values of all the variables of time 0;

• compute the probabilities of all the variables at time 1;

• assess whether it is a good time to close the windows; if not

• create a copy of the dynamic BN relabelling “time 0” as “time 1” and
“time 1” as “time 2”;

• take the marginal probabilities for the the variables at time 1 and
feed them into the new dynamic BN;

• compute the the probabilities of all the variables at time 2.

This procedure can be repeated as many times as needed, to obtain
probabilities for events at any point in the future.
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Manual Two-Times Dynamic BN

• Create a copy of the dynamic BN relabelling “time 0” as “time 1” and
“time 1” as “time 2”;
win.dbn2 = win.dbn
nodes(win.dbn)

[1] "CO2_0" "CO2_1" "Hin_0" "Hin_1" "Sun_0" "Sun_1"
[7] "Tin_0" "Tin_1" "Tout_0" "Tout_1" "W_0"

nodes(win.dbn2) = gsub("_1", "_2", nodes(win.dbn))
nodes(win.dbn2) = gsub("_0", "_1", nodes(win.dbn2))
nodes(win.dbn2)

[1] "CO2_1" "CO2_2" "Hin_1" "Hin_2" "Sun_1" "Sun_2"
[7] "Tin_1" "Tin_2" "Tout_1" "Tout_2" "W_1"

• take the marginal probabilities for the the variables at time 1;
pred.values = cpdist(win.dbn, nodes = nodes(win.dbn), method = "lw",

evidence = list(CO2_0 = "high", Hin_0 = "high",
Sun_0 = "high", Tin_0 = "18-24",
Tout_0 = "<18", W_0 = "open"))

CO2_1.new = prop.table(table(pred.values[, "CO2_1"]))
Hin_1.new = prop.table(table(pred.values[, "Hin_1"]))
Sun_1.new = prop.table(table(pred.values[, "Sun_1"]))
Tin_1.new = prop.table(table(pred.values[, "Tin_1"]))
Tout_1.new = prop.table(table(pred.values[, "Tout_1"]))
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Manual Two-Times Dynamic BN

• feed them into the new dynamic BN;
win.dbn2$CO2_1 = CO2_1.new
win.dbn2$Hin_1 = Hin_1.new
win.dbn2$Sun_1 = Sun_1.new
win.dbn2$Tin_1 = Tin_1.new
win.dbn2$Tout_1 = Tout_1.new

• compute the joint probability of Tin_2 and CO2_2 .
pred.values = rbn(win.dbn2, 5000)[, c("Tin_2", "CO2_2")]
values.prob2 = prop.table(table(pred.values))
values.prob2

CO2_2
Tin_2 low medium high

<18 0.2044 0.1378 0.0204
18-24 0.2860 0.2512 0.0464
>24 0.0246 0.0234 0.0058

What can we see? The probability of 18-24 and medium is much lower at
time 2 compared to time (0.251 down from 0.404), while the probability
of low CO2 is higher (0.515 up from 0.309). The effect of the window being
kept open...
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Systematic Two-Times Dynamic BN

Amore systematic approach is to build a dynamic BN spanning all of
times 0, 1, and 2.
win.dyn2 = model2network(paste0("[Tout_0][Sun_0][W_0][Tin_0][Hin_0][CO2_0]",

"[Tout_1|Tout_0][Sun_1|Sun_0][Tin_1|Tin_0:Tout_1:W_0:Sun_1]",
"[Hin_1|Hin_0:W_0][CO2_1|CO2_0:W_0][Tout_2|Tout_1][Sun_2|Sun_1]",
"[Tin_2|Tin_1:Tout_2:W_1:Sun_2][Hin_2|Hin_1:W_1]",
"[CO2_2|CO2_1:W_1][W_1]"))

nodes.t0 = grep("_0$", nodes(win.dyn2), value = TRUE)
nodes.t1 = grep("_1$", nodes(win.dyn2), value = TRUE)
nodes.t2 = grep("_2$", nodes(win.dyn2), value = TRUE)
graphviz.plot(win.dyn2, groups = list(nodes.t0, nodes.t1, nodes.t2),
shape = "ellipse")
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Systematic Two-Times Dynamic BN

Each variable is replicated in time 2; so we need to copy the probability
tables as they are, just changing the variable names.

Tin_2.prob = Tin_1.prob
names(dimnames(Tin_2.prob)) = c("Tin_2", "Tin_1", "W_1", "Sun_2", "Tout_2")
Tout_2.prob = Tout_1.prob
names(dimnames(Tout_2.prob)) = c("Tout_2", parents(win.dyn2, "Tout_2"))
Sun_2.prob = Sun_1.prob
names(dimnames(Sun_2.prob)) = c("Sun_2", parents(win.dyn2, "Sun_2"))
Hin_2.prob = Hin_1.prob
names(dimnames(Hin_2.prob)) = c("Hin_2", parents(win.dyn2, "Hin_2"))
CO2_2.prob = CO2_1.prob
names(dimnames(CO2_2.prob)) = c("CO2_2", parents(win.dyn2, "CO2_2"))
win.bn2 = custom.fit(win.dyn2, list(Tout_0 = Tout_0.prob, Tout_1 = Tout_1.prob,

Tout_2 = Tout_2.prob, Sun_0 = Sun_0.prob, Sun_1 = Sun_1.prob,
Sun_2 = Sun_2.prob, W_0 = W_0.prob, W_1 = W_0.prob,
Tin_0 = Tin_0.prob, Tin_1 = Tin_1.prob, Tin_2 = Tin_2.prob,
CO2_0 = CO2_0.prob, CO2_1 = CO2_1.prob, CO2_2 = CO2_2.prob,
Hin_0 = Hin_0.prob, Hin_1 = Hin_1.prob, Hin_2 = Hin_2.prob))
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Comparing Predicted Probabilities

Since we now have all of times 0, 1 and 2 in a single BN, we can perform a
query about time 2 conditioning on the evidence we observe at time 0
without resorting to the iterative procedure we used earlier.

pred.values = cpdist(win.bn2, nodes = c("Tin_2", "CO2_2"), method = "lw",
evidence = list(CO2_0 = "high", Hin_0 = "high", Sun_0 = "high",

Tin_0 = "18-24", Tout_0 = "<18", W_0 = "open"))
prop.table(table(pred.values))

CO2_2
Tin_2 low medium high
<18 0.2120 0.1492 0.0252
18-24 0.2701 0.2404 0.0442
>24 0.0264 0.0272 0.0053

Same as before, modulo some simulation variability:

values.prob2
CO2_2

Tin_2 low medium high
<18 0.2044 0.1378 0.0204
18-24 0.2860 0.2512 0.0464
>24 0.0246 0.0234 0.0058
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R Programming: a Summary

• model2network() and empty.graph() + set.arc() to create the
graph of a Bayesian network.

• custom.fit() to create the networks from expert knowledge.

• bn.fit() to estimate the probabilities from data.

• bn.cv() to tests predictive accuracy using cross-validation.

• nparams() to count the parameters; nnodes() gives the number of
nodes and narcs() gives the number of arcs.

• cpdist() , cpquery() and predict() to use the networks for
inference, either with queries or prediction. (More on that in the next
lectures.)
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Summary and Remarks

• Bayesian networks can be used to model the most disparate
problems.

• The information we need to construct a Bayesian network can come
from experts, from data or both; if it comes from data wemust make
sure we have enough to estimate the probabilities well.

• Bayesian networks can be dynamic andmodel phenomena that
evolve over time.

• In any case, wemust sanity check them before putting them to use:
• making sure they are not sensitive to small changes in the probabilities

for various variables, and

• using queries we know the answer of to check the answers we get are
sensible.
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Inference



Events, Evidence and Queries

A BN represents a working model of the world that a computer can
understand; but how does a computer system use it to help and perform
its assigned task?

We ask questions, and the computer system performs probabilistic
inference to answer them and decide what to do in the process.

Questions that can be asked are called queries and are typically about an
event of interest given some evidence. The evidence is the input to the
computer system (“Someone with a high-school degree.”) and the event
is the output (“A man driving a car.”). This is often called belief update:
we observe some evidence and we update our beliefs before taking
action.
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Events, Evidence and Queries

The twomost common queries are

• conditional probability queries (“What is the probability that
someone with high-school degree is a man driving a car?”); and

• most probable explanation queries (“What is the most probable sex
andmode of transportation for someone with a high-school
degree?”)

In both cases the evidence is hard evidence: we set some variables to
particular values. Then the computer system checks how the
probabilities of other variables change and provides an answer to the
query.

Nomore manual probability computations...
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The Effects of Conditioning on Hard Evidence
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The original survey BN (left), and the posterior BN with hard evidence on
Education (right). 3



Conditional Probability Queries in Pictures
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Maximum a Posteriori Queries in Pictures
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Exact and Approximate Inference

There are two approaches to answer queries using BNs.

Exact algorithms use the DAG of a BN to schedule and perform repeated
applications of Bayes theorem and the probability axioms on the
probabilities in the model. In other words, the computer system uses the
DAG to perform all the math we did by hand in earlier lectures.

The two best known are

• variable elimination; and

• belief updates based on junction trees.

PROS: they return exact values for the probabilities of interest.
CONS: they do not scale well when BNs have many nodes andmany arcs.
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Exact and Approximate Inference

Approximate algorithms use the BN as a model of the world in a very
literal sense. In the real world to answer some question in a scientific,
rigorous way we would perform an experiment and observe the
outcome; approximate algorithms imitate this process by generating
random observations from the BN, thus running a simulated experiment
that approximates reality.

The two best known are

• logic sampling; and

• likelihood weighting.

PROS: they scale really well when BNs have many nodes andmany arcs.
CONS: they return approximate, estimated values for the probabilities of
interest.
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The Logic Sampling Algorithm

INPUT: a BN, evidence𝐸 and query event𝑄.
1. Order the variables in X according to the topological ordering in the

DAG (from top to bottom), so that parents come before children.

2. Set 𝑛𝐸 = 0 and 𝑛𝐸,𝑄 = 0.
3. For a suitably large number of samples x:

3.1 generate a random value from each𝑋𝑖 ∣ Π𝑋𝑖
taking advantage of the fact

that, thanks to the topological ordering, by the time we are considering
𝑋𝑖 we have already generated the values of all its parentsΠ𝑋𝑖

;

3.2 if x includes𝐸, set 𝑛𝐸 = 𝑛𝐸 + 1;

3.3 if x includes both𝑄 and𝐸, set 𝑛𝐸,𝑄 = 𝑛𝐸,𝑄 + 1.

4. The answer to the query is the estimated probability 𝑛𝐸,𝑄/𝑛𝐸.
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A Survey Example

Consider:

• the evidence: someone whose Education (E) level is a high school
diploma (high)...

• the event: ... is a man (S is equal to M) uses a car as a means of
Transportation (T).

We will answer this query using the different inference algorithms.

  E = "high"  

 T = "car" 

A

O R

S = "M"
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Stepping Through Logic Sampling

First, we sample from the BN with rbn() , which takes a bn.fit object
and the number of random samples to generate as arguments.

particles = rbn(bn, 10^6)
head(particles, n = 5)

A E O R S T
1 old high emp big M train
2 old high emp big M car
3 adult high emp big F car
4 old high emp big M other
5 young high emp big M car

The samples have the correct types and format as derived from the BN,
and they are stored in a data frame that has the same structure as that of
the data that were used to learn the BN (if any).
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Stepping Through Logic Sampling

Then we count howmany of those samples that match the evidence𝐸 to
estimate P(𝐸).

partE = particles[(particles[, "E"] == "high"), ]
nE = nrow(partE)

We also count howmany of those samples that match the evidence𝐸
and the query event𝑄 to estimate P(𝑄,𝐸).

partEQ =
partE[(partE[, "S"] == "M") & (partE[, "T"] == "car"), ]

nEQ = nrow(partEQ)

Finally, we estimate

P(𝑄 ∣ 𝐸) =
P(𝑄,𝐸)

P(𝐸)
.

nEQ/nE
[1] 0.343
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The cpquery() Function

These steps are implemented in cpquery() , with the obvious
arguments:

• event is𝑄;

• evidence is𝐸;

• method is "ls" for logic sampling (the default);

• n is the number of random samples.

cpquery(bn, event = (S == "M") & (T == "car"),
evidence = (E == "high"), method = "ls", n = 10^6)

[1] 0.343

Both event end evidence are expressions that are evaluated on the
random samples much like subset() would, so they must evaluate to a
vector of TRUE and FALSE values (hence & and not &&).
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More Advanced Queries with cpquery()

Specifying the arguments requires some care, but the result is an
extremely flexible framework to compute the probability of arbitrary
combinations of events.

As an example of a more complex query, we can compute

P(S = M, T = car ∣ {A = young, E = uni} ∪ {A = adult}),

the probability of a man travelling by car given that his Age is young and
his Education is uni or that he is an adult , regardless of his Education.
That would be:

cpquery(bn, event = (S == "M") & (T == "car"),
evidence = ((A == "young") & (E == "uni")) | (A == "adult"))
[1] 0.338
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Stepping Through Logic Sampling

nparticles = seq(from = 5 * 10^3, to = 10^5, by = 5 * 10^3)
prob = matrix(0, nrow = length(nparticles), ncol = 20)
for (i in seq_along(nparticles))
for (j in 1:20)

prob[i, j] = cpquery(bn, event = (S == "M") & (T == "car"),
evidence = (E == "high"), method = "ls", n = 10^6)
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The Limits of Logic Sampling

Notice anything in the figure in the previous slide?

• Logic sampling is obviously affected by sampling variability: every
time we run it we get a different estimate of the probability that is the
answer to our query because the random samples we generate will be
different.

• Sampling variability decreases with the number of samples we
generate, but it never goes to zero; there is always some uncertainty
around the exact value we estimate (here 0.343 ± 0.001).

• Remember that we essentially discard all random samples that do not
match the evidence we condition on, so if the evidence has low
probability we are throwing out almost all samples we generate.
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The Likelihood Weighting Algorithm

An improvement over logic sampling, designed to solve this problem, is
the likelihood weighting algorithm. Unlike logic sampling, all the
random samples generated by likelihood weighting include the evidence
𝐸 by design.

1. Order the variables in X according to the topological ordering in the
DAG (from top to bottom), so that parents come before children.

2. Set𝑤𝐸 = 0 and𝑤𝐸,𝑄 = 0.
3. For a suitably large number of samples x:

3.1 generate a random value from each𝑋𝑖 ∣ Π𝑋𝑖
and fix the relevant

variables to the values specified by the evidence𝐸.
3.2 compute the weight𝑤x = P(𝐸).
3.3 set𝑤𝐸 = 𝑤𝐸 +𝑤x;
3.4 if x includes𝑄 , set𝑤𝐸,𝑄 = 𝑤𝐸,𝑄 +𝑤x.

4. The answer to the query is the estimated probability𝑤𝐸,𝑄/𝑤𝐸.
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Stepping Through Likelihood Weighting

We do not want to sample from the original BN, but from the BN in which
all the nodes covered by𝐸 are fixed. This network is called the mutilated
network.
Compare:
coef(bn$E)

, , S = M

A
E young adult old
high 0.75 0.72 0.88
uni 0.25 0.28 0.12

, , S = F

A
E young adult old
high 0.64 0.70 0.90
uni 0.36 0.30 0.10

parents(bn, "E")
[1] "A" "S"

mutbn = mutilated(bn, list(E = "high"))
coef(mutbn$E)

high uni
1 0

parents(mutbn, "E")
character(0)

No parents, and the value is that in the
evidence with probability equal to 1.
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Stepping Through Likelihood Weighting

Simply sampling from mutbn is not a correct way of answering our query!
A simple empirical check tells us that the naive estimate we could draw
from mutbn is wrong, since it does not match the exact value we got
earlier.

particles = rbn(mutbn, 10^6)
partE = particles[(particles[, "E"] == "high"), ]
partEQ = partE[(particles[, "S"] == "M") &

(particles[, "T"] == "car"), ]
nrow(partEQ) / nrow(partE)

[1] 0.336

That is because nrow(partE) is identical to nrow(particles) by
construction, so the conditional probability is not computed correctly.
What we get is:

P(𝑄,𝐸) =
𝑛𝐸,𝑄

𝑛
≠ P(𝑄 ∣ 𝐸).
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Stepping Through Likelihood Weighting

The weights adjust for the fact that we are sampling from themutilated
BN instead of the original BN. The weights are just the likelihood
components associated with the nodes we are conditioning on (E in this
case):

w = logLik(bn, particles, nodes = "E", by.sample = TRUE)
wEQ = sum(exp(w[(particles[, "S"] == "M") &

(particles[, "T"] == "car")]))
wE = sum(exp(w))
wEQ/wE

[1] 0.343

NOTE: the likelihood of an observation has the samemathematical
expression as its probability, so for practical purposes here it is just
P(𝐸). logLik() returns log P(𝐸) in the code above.
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Stepping Through Likelihood Weighting

More conveniently, we can perform likelihood weighting with cpquery by
setting method = "lw" and specifying the evidence as a named list with
one element for each node we are conditioning on.

cpquery(bn, event = (S == "M") & (T == "car"),
evidence = list(E = "high"), method = "lw", n = 5 * 10^4)

[1] 0.343

The estimate we obtain is still very precise with small numbers of
random samples, as was the case for logic sampling, but the variability of
the estimated probabilities is actually larger. There is no guarantee that
likelihoodweighting will always have lower variance than logic sampling.
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Stepping Through Likelihood Weighting

nparticles = seq(from = 5 * 10^3, to = 10^5, by = 5 * 10^3)
prob = matrix(0, nrow = length(nparticles), ncol = 20)
for (i in seq_along(nparticles))
for (j in 1:20)

prob[i, j] = cpquery(bn, event = (S == "M") & (T == "car"),
evidence = list(E = "high"), method = "lw",
n = nparticles[i])
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Then Why Use Likelihood Weighting?

Logic sampling will be computationally inefficient and very inaccurate if
P(𝐸) is small because most random samples will be discarded without
contributing to the estimation of P(𝑄 ∣ 𝐸).

extreme.dag = model2network("[A][B|A]")
A.prob = array(c(0.999999, 0.000001), dim = 2,

dimnames = list(A = c("a1", "a2")))
B.prob = array(c(0.5, 0.5, 0.75, 0.25), dim = c(2, 2),

dimnames = list(B = c("b1", "b2"), A = c("a1", "a2")))
extreme.bn = custom.fit(extreme.dag, list(A = A.prob, B = B.prob))
cpquery(extreme.bn, event = (B == "b2"), evidence = (A == "a2"),
method = "ls", n = 10^6)
[1] 0.333

This simply does not happen with likelihood weighting.

cpquery(extreme.bn, event = (B == "b2"), evidence = list(A = "a2"),
method = "lw", n = 5 * 10^3)
[1] 0.249
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A Comparison for Different Numbers of Random Samples
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Extensions of Likelihood Weighting

The event is still a general expression, which means it is possible to
describe complex events. However, likelihood weighting relies on the
fact that the evidence is fixed to a single value to compute the weights.
In bnlearn this assumption is relaxed: the event can take more than one
value for each variable. All combinations of values are given the same
probability so as not to alter the weights.

cpquery(bn, event = (S == "M") & (T == "car"),
evidence = list(A = c("young", "adult")), method = "lw", n = 10^6)
[1] 0.337

cpquery(bn, event = (S == "M") & (T == "car"),
evidence = list(A = "young"), method = "lw", n = 10^6) * 0.5 +

cpquery(bn, event = (S == "M") & (T == "car"),
evidence = list(A = "adult"), method = "lw", n = 10^6) * 0.5
[1] 0.337
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Sampling and Conditioning

Last but not least, we can also use cpdist() to generate random
samples conditional on some evidence𝐸. Likelihood weighting works
best, and attaches the weights to the samples (for use in later analyses).

cpdist(bn, nodes = c("S", "T"), evidence = list(A = "adult"),
method = "lw", n = 5)

S T
1 M car
2 F car
3 F car
4 M car
5 F car

Logic sampling works less well because it often returns far fewer
observations than requested.

cpdist(bn, nodes = c("S", "T"), evidence = (A == "young"),
method = "ls", n = 5)

S T
1 M car
2 F car
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The Junction Tree Algorithm

1. Moralise: create the moral graph of the BNℬ.
2. Triangulate: break every cycle spanning 4 or more nodes into

sub-cycles of exactly 3 nodes by adding arcs to the moral graph, thus
obtaining a triangulated graph.

3. Cliques: identify the cliques𝐶1,… ,𝐶𝑘 of the triangulated graph, i.e.,
maximal subsets of nodes in which each element is adjacent to all the
others.

4. Junction Tree: create a tree in which each clique is a node, and
adjacent cliques are linked by arcs. The tree must satisfy the running
intersection property: if a node belongs to two cliques𝐶𝑖 and𝐶𝑗, it
must be also included in all the cliques in the (unique) path that
connects𝐶𝑖 and𝐶𝑗.

5. Parameters: use the parameters of the local distributions ofℬ to
compute the parameter sets of the compound nodes of the junction
tree.
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Creating the Moral Graph

We saw how to create a moral graph earlier when introducing
d-separation:

survey.dag = model2network("[A][S][E|A:S][O|E][R|E][T|O:R]")
survey.moral = moral(survey.dag)

NOTE: different DAGs can express the same set of dependencies, and
therefore will have the samemoral graph. This in turn means exact
inference by means of junction trees will return the same results for
conditional probability andmaximum a posteriori queries. They are
probabilistically indistinguishable.

27



Different DAGs, Same Moral Graph

survey.dag1 = model2network("[A][S][E|A:S][O|E][R|E][T|O:R]")
survey.dag2 = model2network("[A|E][S|A:E][E|O:R][O|R:T][R|T][T]")
par(mfrow = c(1, 2))
graphviz.plot(moral(survey.dag1))
graphviz.plot(moral(survey.dag2))

A

E

O

R

S

T

A

E

O

R

S

T
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Finding the Cliques

A

E

O

R

S

T

Themoral graph is already
triangulated, and we can see three
cliques:

𝐶1 = {𝐴,𝐸, 𝑆}
𝐶2 = {𝐸,𝑂,𝑅}
𝐶3 = {𝑂,𝑅, 𝑇}

with separators:

𝑆12 = {𝐸}
𝑆23 = {𝑂,𝑅}

which we can use to build the
junction tree.
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Building the Junction Tree

A

E

S

E

O

R

O

R

T

O

R
E
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Estimating the Parameters

In this example on the survey BN, the parameters for the cliques are:

Θ𝐶1
= P(𝐴,𝐸, 𝑆) = P(𝐴)P(𝑆)P(𝐸 ∣ 𝐴, 𝑆)

Θ𝐶2
= P(𝐸,𝑂,𝑅) = P(𝑂 ∣ 𝐸)P(𝑅 ∣ 𝐸)P(𝐸)

Θ𝐶3
= P(𝑂,𝑅, 𝑇 ) = P(𝑇 ∣ 𝑂,𝑅)P(𝑂),P(𝑅)

and those for the separators are:

Θ𝑆12
= P(𝐸)

Θ𝑆23
= P(𝑂,𝑅)

All can be readily computed from the local distributions in the BN.
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Estimating the Parameters

C1 = coef(bn$E)
for (a in A.lv)
for (s in S.lv)

C1[, a, s] = C1[, A = a, S = s] * coef(bn$A)[a] * coef(bn$S)[s]
C1

, , S = M

A
E young adult old
high 0.1350 0.2160 0.1056
uni 0.0450 0.0840 0.0144

, , S = F

A
E young adult old
high 0.0768 0.1400 0.0720
uni 0.0432 0.0600 0.0080

S12 = margin.table(C1, 1)
S12

E
high uni

0.745 0.255
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Estimating the Parameters

C2 = array(0, dim = c(2, 2, 2), dimnames = list(O = O.lv, R = R.lv, E = E.lv))
for (o in O.lv)
for (r in R.lv)

for (e in E.lv)
C2[o, r, e] = coef(bn$O)[o, e] * coef(bn$R)[r, e] * S12[e]

C2
, , E = high

R
O small big
emp 0.17890 0.5367
self 0.00745 0.0224

, , E = uni

R
O small big
emp 0.04685 0.1874
self 0.00407 0.0163
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Estimating the Parameters

S23 = margin.table(C2, 1:2)
S23

R
O small big
emp 0.2257 0.7241
self 0.0115 0.0387

C3 = coef(bn$T)
for (t in T.lv)

for (o in O.lv)
for (r in R.lv)

C3[t, o, r] = C3[t, o, r] *
S23[o, r]

C3
, , R = small

O
T emp self

car 0.108356 0.006455
train 0.094812 0.004150
other 0.022574 0.000922

, , R = big

O
T emp self

car 0.419963 0.027059
train 0.173778 0.008118
other 0.130333 0.003479
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Belief Propagation and Message Passing

O

R

T

O

R
E

E

O

R

A

E

S

Say we set Education to “high school”; we can change it directly in 𝑆12, but then
we need to propagate the changes to𝐶1 and𝐶2; and from𝐶2 to 𝑆23 and to𝐶3.
This is called belief propagation by message passing.
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Belief Propagation and Message Passing

new.S12 = S12
new.S12["high"] = 1
new.S12["uni"] = 0
new.S12

high uni
1 0

new.C1 = C1
for (e in E.lv)
for (a in A.lv)
for (s in S.lv)
new.C1[e, a, s] =
C1[e, a, s] / S12[e] *

new.S12[e]

new.C1
, , S = M

A
E young adult old

high 0.1811 0.2898 0.1417
uni 0.0000 0.0000 0.0000

, , S = F

A
E young adult old

high 0.1030 0.1878 0.0966
uni 0.0000 0.0000 0.0000

margin.table(new.C1, 1)
E
high uni

1 0

margin.table(new.C1) and new.S12 match as expected.
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Belief Propagation and Message Passing

new.C2 = C2
for (o in O.lv)
for (r in R.lv)
for (e in E.lv)
new.C2[o, r, e] =
C2[o, r, e] / S12[e] *

new.S12[e]
new.C2

, , E = high

R
O small big
emp 0.24 0.72
self 0.01 0.03

, , E = uni

R
O small big
emp 0 0
self 0 0

new.S23 = margin.table(new.C2, 1:2)
new.S23

R
O small big

emp 0.24 0.72
self 0.01 0.03

new.C3 = C3
for (t in T.lv)

for (o in O.lv)
for (r in R.lv)

new.C3[t, o, r] =
C3[t, o, r] / S23[o, r] *

new.S23[o, r]

Which completes the first iteration of belief propagation.
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Belief Propagation and Message Passing

In more complex graphs andmore complex queries wemay needmore
than one iteration, but for this relatively simple network the belief
propagation is complete.

Computing P(S = M, T = car) at this point can be done easily by:

T = margin.table(new.C3, 1)
S = margin.table(new.C1, 3)
as.numeric(S["M"] * T["car"])

[1] 0.343

because Sex and Transportation are in different cliques and are
separated by Education, and therefore independent.
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gRain: Exact Inference with Junction Trees

Junction trees and belief propagation are implemented in the gRain
package. In order to answer our query, we convert the BN from bnlearn
to its equivalent in gRainwith as.grain() and we construct the junction
tree with compile() .

library(gRain)
junction = compile(as.grain(bn))

Then we set the evidence on the node, fixing it to “high school” with
probability 1with setEvidence() .

jedu = setEvidence(junction, nodes = "E", states = "high")

And after that, we can perform our conditional probability query with
querygrain() , which also takes care of the belief propagation.

SxT.cpt = querygrain(jedu, nodes = c("S", "T"), type = "joint")
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Joint and Marginal Conditional Probabilities

The result of our query is the joint distribution of Sex and Travel given
that Education is “high school”.

SxT.cpt
T

S car train other
M 0.343 0.174 0.0962
F 0.217 0.110 0.0609

Similarly, we can use querygrain() compute the marginal distributions
of Sex and Travel conditional on Education.

querygrain(jedu, nodes = c("S", "T"), type = "marginal")
$S
S

M F
0.613 0.387

$T
T
car train other

0.559 0.283 0.157
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D-Separation and Conditional Independence

Interestingly, we can also compute the conditional distribution of Sex
given Travel (still conditioning on Education being “high school”), which
turns out to be:

querygrain(jedu, nodes = c("S", "T"), type = "conditional")
T

S car train other
M 0.613 0.613 0.613
F 0.387 0.387 0.387

This makes sense in the light of d-separation, which implies conditional
independence.

dsep(bn, x = "S", y = "T", z = "E")
[1] TRUE
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A Domotics Example

Consider one of the queries we used to assess the dynamic BN:

• the evidence is that, at time zero, the inside temperature (Tin_0) is
higher than 24 degrees and the outside temperature (Tout_0) is
lower than 18 degrees;

• the event is that the inside temperature at time 1 (Tin_1) is between
18 and 24 degrees.

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1  Tin_0 > 24 

  18 <= Tin_1 <= 24  

 Tout_0 < 18 

Tout_1W_0

42



Generating Random Observations from the BN

Logic sampling involves generating random observations from the BN, to
simulate a real-world experiment in which we would collect new data.
How is it done?

We start from a completely empty set of values for the variables.

CO2_0 W_0 Hin_0 Sun_0 Tin_0 Tout_0

? ? ? ? ? ?

CO2_1 Hin_1 Sun_1 Tin_1 Tout_1

? ? ? ? ?

Then we start generating values for the variables starting from the top of
the BN and going down.
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Generating Random Observations from the BN

 CO2_0 =
 "medium" 

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1 Tin_0

Tin_1

Tout_0

Tout_1W_0

CO2_0 W_0 Hin_0 Sun_0 Tin_0 Tout_0

medium ? ? ? ? ?

CO2_1 Hin_1 Sun_1 Tin_1 Tout_1

? ? ? ? ?
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Generating Random Observations from the BN

 CO2_0 =
 "medium" 

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1 Tin_0

Tin_1

Tout_0

Tout_1 W_0 =
 "open" 

CO2_0 W_0 Hin_0 Sun_0 Tin_0 Tout_0

medium open ? ? ? ?

CO2_1 Hin_1 Sun_1 Tin_1 Tout_1

? ? ? ? ?
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Generating Random Observations from the BN

 CO2_0 =
 "medium" 

CO2_1

 Hin_0 =
 "low" 

Hin_1

Sun_0

Sun_1 Tin_0

Tin_1

Tout_0

Tout_1 W_0 =
 "open" 

CO2_0 W_0 Hin_0 Sun_0 Tin_0 Tout_0

medium open low ? ? ?

CO2_1 Hin_1 Sun_1 Tin_1 Tout_1

? ? ? ? ?
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Generating Random Observations from the BN

 CO2_0 =
 "medium" 

CO2_1

 Hin_0 =
 "low" 

Hin_1

 Sun_0 =
 "high" 

Sun_1 Tin_0

Tin_1

Tout_0

Tout_1 W_0 =
 "open" 

CO2_0 W_0 Hin_0 Sun_0 Tin_0 Tout_0

medium open low high ? ?

CO2_1 Hin_1 Sun_1 Tin_1 Tout_1

? ? ? ? ?
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Generating Random Observations from the BN

 CO2_0 =
 "medium" 

CO2_1

 Hin_0 =
 "low" 

Hin_1

 Sun_0 =
 "high" 

Sun_1  Tin_0 =
 "18−24" 

Tin_1

Tout_0

Tout_1 W_0 =
 "open" 

CO2_0 W_0 Hin_0 Sun_0 Tin_0 Tout_0

medium open low high 18-24 ?

CO2_1 Hin_1 Sun_1 Tin_1 Tout_1

? ? ? ? ?
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Generating Random Observations from the BN

 CO2_0 =
 "medium" 

CO2_1

 Hin_0 =
 "low" 

Hin_1

 Sun_0 =
 "high" 

Sun_1  Tin_0 =
 "18−24" 

Tin_1

 Tout_0 =
 "18−24" 

Tout_1 W_0 =
 "open" 

CO2_0 W_0 Hin_0 Sun_0 Tin_0 Tout_0

medium open low high 18-24 18-24

CO2_1 Hin_1 Sun_1 Tin_1 Tout_1

? ? ? ? ?
49



Generating Random Observations from the BN

 CO2_0 =
 "medium" 

 CO2_1 =
 "low" 

 Hin_0 =
 "low" 

Hin_1

 Sun_0 =
 "high" 

Sun_1  Tin_0 =
 "18−24" 

Tin_1

 Tout_0 =
 "18−24" 

Tout_1 W_0 =
 "open" 

CO2_0 W_0 Hin_0 Sun_0 Tin_0 Tout_0

medium open low high 18-24 18-24

CO2_1 Hin_1 Sun_1 Tin_1 Tout_1

low ? ? ? ?
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Generating Random Observations from the BN

 CO2_0 =
 "medium" 

 CO2_1 =
 "low" 

 Hin_0 =
 "low" 

 Hin_1 =
 "low" 

 Sun_0 =
 "high" 

Sun_1  Tin_0 =
 "18−24" 

Tin_1

 Tout_0 =
 "18−24" 

Tout_1 W_0 =
 "open" 

CO2_0 W_0 Hin_0 Sun_0 Tin_0 Tout_0

medium open low high 18-24 18-24

CO2_1 Hin_1 Sun_1 Tin_1 Tout_1

low low ? ? ?
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Generating Random Observations from the BN

 CO2_0 =
 "medium" 

 CO2_1 =
 "low" 

 Hin_0 =
 "low" 

 Hin_1 =
 "low" 

 Sun_0 =
 "high" 

 Sun_1 =
 "low" 

 Tin_0 =
 "18−24" 

Tin_1

 Tout_0 =
 "18−24" 

Tout_1 W_0 =
 "open" 

CO2_0 W_0 Hin_0 Sun_0 Tin_0 Tout_0

medium open low high 18-24 18-24

CO2_1 Hin_1 Sun_1 Tin_1 Tout_1

low low low ? ?
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Generating Random Observations from the BN

 CO2_0 =
 "medium" 

 CO2_1 =
 "low" 

 Hin_0 =
 "low" 

 Hin_1 =
 "low" 

 Sun_0 =
 "high" 

 Sun_1 =
 "low" 

 Tin_0 =
 "18−24" 

Tin_1

 Tout_0 =
 "18−24" 

 Tout_1 =
 "< 18" 

 W_0 =
 "open" 

CO2_0 W_0 Hin_0 Sun_0 Tin_0 Tout_0

medium open low high 18-24 18-24

CO2_1 Hin_1 Sun_1 Tin_1 Tout_1

low low low ? < 18
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Generating Random Observations from the BN

 CO2_0 =
 "medium" 

 CO2_1 =
 "low" 

 Hin_0 =
 "low" 

 Hin_1 =
 "low" 

 Sun_0 =
 "high" 

 Sun_1 =
 "low" 

 Tin_0 =
 "18−24" 

 Tin_1 =
 "18−24" 

 Tout_0 =
 "18−24" 

 Tout_1 =
 "< 18" 

 W_0 =
 "open" 

CO2_0 W_0 Hin_0 Sun_0 Tin_0 Tout_0

medium open low high 18-24 18-24

CO2_1 Hin_1 Sun_1 Tin_1 Tout_1

low low low 18-24 < 18
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Sampling and Conditional Sampling

This process goes under the name of random sampling, and it can be
conditional or unconditional.

rbn() repeats the steps in the previous slides for each random sample it
generates from the BN. It performs unconditional sampling, in the sense
that we use the probabilities in the BN without fixing the values of any of
the nodes.

For logic sampling, cpdist() generates random samples with rbn() and
then discards those in which the variables in the evidence do not take the
values they are expected to. Hence it performs conditional sampling, in
the sense that it only returns a sample conditional on the fact that the
evidence is observed.

cpquery() then takes the samples returned by cpdist() and computes
the conditional probability for the query by the relative frequency of the
event we are looking for.
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An Aside: Random Sampling from a Discrete Variable

How do we sample the values of a discrete variable at random?
1. generate a random number between 0 and 1;
2. sort the values of the variables;
3. for each value of the variable, in order:
3.1 if the random number is smaller than the probability of this value and of

those that precede it, choose it;
3.2 else move to the next value.
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Stepping Through Logic Sampling

Computing the conditional probability with logic sampling involves the
following steps:

1. generate the random samples;
particles = rbn(win.dbn, 10^6)
head(particles, n = 5)

CO2_0 CO2_1 Hin_0 Hin_1 Sun_0 Sun_1 Tin_0 Tin_1 Tout_0 Tout_1 W_0
1 medium low low low low high 18-24 18-24 18-24 18-24 open
2 low low high high low low 18-24 18-24 18-24 >24 open
3 low low high low low low 18-24 18-24 18-24 18-24 open
4 high high low high high high 18-24 18-24 18-24 18-24 closed
5 medium medium low low low high <18 18-24 18-24 >24 open

2. count howmanymatch the evidence;
partE = particles[(particles[, "Tin_0"] == ">24") &

(particles[, "Tout_0"] == "<18"), ]
nE = nrow(partE)
nE

[1] 9821
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Stepping Through Logic Sampling
3. count howmany also match the event;

partEQ = partE[(partE[, "Tin_1"] == "18-24"), ]
nEQ = nrow(partEQ)
nEQ

[1] 3932

4. estimate the conditional probability.
nEQ/nE

[1] 0.4

The estimated conditional probability of 0.4 is about the same as that
returned by cpquery() ; it is not identical because cpquery() generates
a second set of random samples, so the frequencies nE and nEQ will not
be exactly the same as before.
cpquery(win.dbn, event = (Tin_1 == "18-24"),
evidence = (Tin_0 == ">24") & (Tout_0 == "<18"), n = 10^6)
[1] 0.406

Even though we generated 106 random samples, we use only the 9821
samples that match the evidence to compute the conditional probability.
If the evidence is a rare event, that is a problem! 58



Stepping Through Likelihood Weighting

Computing the conditional probability with likelihood weighting
involves the following steps:
1. mutilate the BN;

mutbn = mutilated(win.dbn, list(Tin_0 = ">24", Tout_0 = "<18"))
mutbn$Tin_0

Parameters of node Tin_0 (multinomial distribution)

Conditional probability table:
<18 18-24 >24
0 0 1

mutbn$Tout_0

Parameters of node Tout_0 (multinomial distribution)

Conditional probability table:
<18 18-24 >24
1 0 0
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Stepping Through Likelihood Weighting
2. generate the random samples;

particles = rbn(mutbn, 10^6)

3. compute the weights for the random samples;
w = logLik(win.dbn, particles, nodes = c("Tin_0", "Tout_0"), by.sample = TRUE)

4. sum up the weights of the random samples that match the evidence,
and of all the random samples;
wEQ = sum(exp(w[particles[, "Tin_1"] == "18-24"]))
wE = sum(exp(w))

5. estimate the conditional probability.
wEQ/wE

[1] 0.399

The estimated probability is again very close to that returned by
cpquery() .
cpquery(win.dbn, event = (Tin_1 == "18-24"),

evidence = list(Tin_0 = ">24", Tout_0 = "<18"),
n = 10^6, method = "lw")

[1] 0.399
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For Different Numbers of Random Samples?
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The Junction Tree Algorithm

The first step in the junction tree algorithm is to construct the moral
graph from the BN by removing arc directions and joining parents that
share a common child.

moral.dyn = moral(win.dyn)
graphviz.plot(moral.dyn, shape = "ellipse")

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1Tout_0

Tout_1

W_0
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Constructing the Moral Graph

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1 Tin_0

Tin_1

Tout_0

Tout_1W_0
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Constructing the Moral Graph

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1 Tin_0

Tin_1

Tout_0

Tout_1W_0
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Constructing the Moral Graph

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1 Tin_0

Tin_1

Tout_0

Tout_1W_0
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Constructing the Moral Graph

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1

Tout_0

Tout_1W_0
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Constructing the Moral Graph

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1

Tout_0

Tout_1

W_0
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Constructing the Moral Graph

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1

Tout_0

Tout_1

W_0
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Constructing the Moral Graph

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1Tout_0

Tout_1

W_0
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Identifying the Cliques

The second step is to identify the cliques in the moral graph.

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1Tout_0

Tout_1

W_0
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Identifying the Cliques

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1Tout_0

Tout_1

W_0
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Identifying the Cliques

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1Tout_0

Tout_1

W_0
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Identifying the Cliques

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1Tout_0

Tout_1

W_0
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Identifying the Cliques

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1Tout_0

Tout_1

W_0
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Identifying the Cliques

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1Tout_0

Tout_1

W_0
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Identifying the Cliques

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1Tout_0

Tout_1

W_0
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Identifying the Cliques

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1Tout_0

Tout_1

W_0
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Identifying the Cliques

CO2_0

CO2_1

Hin_0

Hin_1

Sun_0

Sun_1

Tin_0

Tin_1Tout_0

Tout_1

W_0
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Identifying the Cliques: the Complete Set

The complete list of the cliques is:

𝐶1 = {W_0, CO2_0, CO2_1} 𝑆12 = {W_0}
𝐶2 = {W_0, Hin_0, Hin_1} 𝑆23 = {W_0}
𝐶3 = {W_0, Sun_1, Tin_0} 𝑆34 = {Sun_1}
𝐶4 = {Sun_0, Sun_1} 𝑆35 = {Sun_1, Tin_0}
𝐶5 = {Sun_1, Tin_0, Tin_1} 𝑆56 = {Tin_0, Tin_1}
𝐶6 = {Tin_0, Tin_1, Tout_1} 𝑆97 = {Tout_1}
𝐶7 = {Tout_0, Tout_1} 𝑆28 = {W_0}
𝐶8 = {W_0, Tout_1, Tin_0} 𝑆29 = {W_0}
𝐶9 = {W_0, Tout_1, Tin_1}

Nowwe have to join them to build the junction tree.
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The Many Invariants of Junction Trees

• Each clique is typically adjacent to many other cliques; if we just build
an undirected graph including all possible separators it will not be a
tree. We include only enough separators to make it a tree; which ones
we choose does not influence the results of the queries.

• Wider trees may be preferable to deeper trees, because we can do
propagation in parallel on different branches.

• The junction trees is an undirected tree; we can pick an arbitrary node
as the root and add arc directions, but they do not matter in
determining the sequence of steps to propagate the evidence.

• There typically are multiple valid sequences of steps in evidence
propagation; all of them lead to the same results and require the
same computations (obviously in different orders).
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Building the Junction Tree

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

(Arc directions are arbitrary, any node can be the root node.)
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Set the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Set the first piece of evidence (Tout_0 is equal to <18) in𝐶7.
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Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of Tout_1 in 𝑆97 from the joint
distribution of Tout_0 , Tout_1 in𝐶7. 83



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of W_0 , Tout_1 , Tin_1 in𝐶9 from the
marginal distribution of Tout_1 in 𝑆97. 84



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of W_0 in 𝑆29 from the joint distribution
of W_0 , Tout_1 , Tin_1 in𝐶9. 85



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of W_0 , Hin_0 , Hin_1 in𝐶2 from the
marginal distribution of W_0 in 𝑆29. 86



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of W_0 in 𝑆12 from the joint distribution
of W_0 , Hin_0 , Hin_1 in𝐶2. 87



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of W_0 , CO2_0 , CO2_1 in𝐶1 from the
marginal distribution of W_0 in 𝑆12. 88



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of W_0 in 𝑆28 from the joint distribution
of W_0 , Hin_0 , Hin_1 in𝐶2. 89



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of W_0 , Tout_1 , Tin_0 in𝐶8 from the
marginal distribution of W_0 in 𝑆28. 90



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of W_0 in 𝑆23 from the joint distribution
of W_0 , Hin_0 , Hin_1 in𝐶2. 91



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of W_0 , Sun_1 , Tin_0 in𝐶3 from the
marginal distribution of W_0 in 𝑆23. 92



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of Sun_1 in 𝑆34 from the joint
distribution of W_0 , Sun_1 , Tin_0 in𝐶3. 93



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of Sun_0 , Sun_1 in𝐶4 from themarginal
distribution of Sun_1 in 𝑆34. 94



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of Sun_1 , Tin_0 in 𝑆35 from the joint
distribution of W_0 , Sun_1 , Tin_0 in𝐶3. 95



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of Sun_1 , Tin_0 , Tin_1 in𝐶5 from the
marginal distribution of Sun_1 , Tin_0 in 𝑆35. 96



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of Tin_0 , Tin_1 in 𝑆56 from the joint
distribution of Sun_1 , Tin_0 , Tin_1 in𝐶5. 97



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of Tin_0 , Tin_1 , Tout_1 in𝐶6 from the
marginal distribution of Tin_0 , Tin_1 in 𝑆56. 98



Set the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Set the second piece of evidence (Tin_0 is equal to 18-24) in𝐶5.
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Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of Tin_0 , Tin_1 in 𝑆56 from the joint
distribution of Sun_1 , Tin_0 , Tin_1 in𝐶5. 100



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of Tin_0 , Tin_1 , Tout_1 in𝐶6 from the
marginal distribution of Tin_0 , Tin_1 in 𝑆56. 101



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of of Sun_1 , Tin_0 in 𝑆35 from the joint
distribution of Sun_1 , Tin_0 , Tin_1 in𝐶5. 102



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of W_0 , Sun_1 , Tin_0 in𝐶3 from the
marginal distribution of of Sun_1 , Tin_0 in 𝑆35. 103



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of Sun_1 in 𝑆34 from the joint
distribution of W_0 , Sun_1 , Tin_0 in𝐶3. 104



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of Sun_0 , Sun_1 in𝐶4 from themarginal
distribution of Sun_1 in 𝑆34. 105



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of W_0 in 𝑆23 from the joint distribution
of W_0 , Sun_1 , Tin_0 in𝐶3. 106



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of W_0 , Hin_0 , Hin_1 in𝐶2 from the
marginal distribution of W_0 in 𝑆23. 107



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of W_0 in 𝑆12 from the joint distribution
of W_0 , Hin_0 , Hin_1 in𝐶2. 108



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of W_0 , CO2_0 , CO2_1 in𝐶1 from the
marginal distribution of W_0 in 𝑆12. 109



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of W_0 in 𝑆28 from the joint distribution
of W_0 , Hin_0 , Hin_1 in𝐶2. 110



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of W_0 , Tout_1 , Tin_0 in𝐶8 from the
marginal distribution of W_0 in 𝑆28. 111



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of W_0 in 𝑆29 from the joint distribution
of W_0 , Hin_0 , Hin_1 in𝐶2. 112



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of W_0 , Tout_1 , Tin_1 in𝐶9 from the
marginal distribution of W_0 in 𝑆29. 113



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the marginal distribution of Tout_1 in 𝑆97 from the joint
distribution of W_0 , Tout_1 , Tin_1 in 𝑆29. 114



Propagate the Evidence

C1

C2

C3

C4 C5

C6

C7

C8 C9

S12

S23 S28 S29

S34 S35

S56

S97

Update the joint distribution of W_0 , CO2_0 , CO2_1 in𝐶7 from the
marginal distribution of Tout_1 in 𝑆97. 115



Junction Trees with gRain

All this is done for us by the function in the gRain package:

1. build the junction tree;
junction = compile(as.grain(win.dbn))

2. set the evidence and propagate it;
updated = setEvidence(junction, nodes = c("Tin_0", "Tout_0"),

states = c(">24", "<18"))

3. compute the conditional probability.
querygrain(updated, nodes = "Tin_1", type = "joint")

Tin_1
<18 18-24 >24

0.0632 0.3995 0.5373

The probability of 0.4 agrees with the approximate inference we
performed earlier.
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R Programming: a Summary

• as.grain() to export a fitted BN from bnlearn to gRain.

• setEvidence() and querygrain() in gRain to perform exact
inference with junction trees.

• rbn() to generate random samples from a BN.

• cpdist() to generate random samples from a BN conditional on
some evidence.

• cpquery() to perform approximate inference with logic sampling and
likelihood weighting.
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Summary and Remarks

1. Models in machine learning must be able to decide whether to
perform particular actions given evidence on the surrounding
environment.

2. The basis of these decisions are the predictions and the conditional
probabilities computed after incorporating evidence into the model.

3. In the context of BNs computing these probability is called inference.

4. There are two classes of algorithms to perform inference:
approximate and exact algorithms.

5. Approximate algorithms are based on generating random samples to
simulate real-world experiments.

6. Exact algorithms automate the mathematical steps we would perform
tomanipulate the probabilities in the model.
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Learning the Parameters



Learning Probabilities from Data

What we have:

• a BN structure, that is, a directed acyclic graph;

• a data set covering the variables in the BN.
What we want:

• the probabilities we need to fill the conditional probability tables for
all the nodes.

A S

E

O R

T

A R E O S T
1 adult big high emp F car
2 adult small uni emp M car
3 adult big uni emp F train
4 adult big high emp M car
5 adult big high emp M car
6 adult small high emp F train

A
young

adult

old

E

high

uni

O
emp

self

R

small

big

S

M

F

T
car

train

other

+ =

1



Network Structure, Data and Parameters

For each node𝑋𝑖:
1. We identify the parentsΠ𝑋𝑖

of the node𝑋𝑖 from the network
structure.

2. We collect the variables𝑋𝑖,Π𝑋𝑖
from the data.

3. We construct a table of counts 𝑛𝑖𝑘𝑗 for each value 𝑘 of𝑋𝑖 for each
possible configuration of the values ofΠ𝑋𝑖

.
4. We estimate the conditional probabilities

𝑝𝑖𝑘∣𝑗 = P(𝑋𝑖 = 𝑥𝑘 ∣ Π𝑋𝑖
= 𝜋𝑗) from the 𝑛𝑖𝑘𝑗.

Two ways of estimating probabilities are:

• frequentist probability estimates; and

• Bayesian probability estimates.
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Frequentist Probability Estimates

In the frequentist paradigm, probability is the relative frequency with
which an event occurs over a large number of observations. Hence:

P(𝑋𝑖 = 𝑥𝑘 ∣ Π𝑋𝑖
= 𝜋𝑗) =

P(𝑋𝑖 = 𝑥𝑘, Π𝑋𝑖
= 𝜋𝑗)

P(Π𝑋𝑖
= 𝜋𝑗)

P(𝑋𝑖 = 𝑥𝑘, Π𝑋𝑖
= 𝜋𝑗) =

𝑛𝑖𝑘𝑗

𝑛

P(Π𝑋𝑖
= 𝜋𝑗) =

𝑛𝑖+𝑗

𝑛
=

∑𝑘 𝑛𝑖𝑘𝑗

𝑛

which means

P(𝑋𝑖 = 𝑥𝑘 ∣ Π𝑋𝑖
= 𝜋𝑗) =

𝑛𝑖𝑘𝑗

�𝑛
�𝑛

∑𝑘 𝑛𝑖𝑘𝑗
=

𝑛𝑖𝑘𝑗

∑𝑘 𝑛𝑖𝑘𝑗
.
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Frequentist Probability Estimates

In tabular form:

Π𝑋𝑖

𝜋1 𝜋2 ⋯ 𝜋𝑞𝑖

𝑋𝑖

𝑥1 𝑛𝑖11 𝑛𝑖12 ⋯ 𝑛𝑖1𝑞𝑖

𝑥2 𝑛𝑖21 𝑛𝑖22 ⋯ 𝑛𝑖2𝑞𝑖

⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝑟𝑖

𝑛𝑖𝑟𝑖1 𝑛𝑖𝑟𝑖2 ⋯ 𝑛𝑖𝑟𝑖𝑞𝑖

𝑛𝑖+1 𝑛𝑖+2 ⋯ 𝑛𝑖+𝑞𝑖

with 𝑛𝑖+1 = ∑𝑘 𝑛𝑖𝑘1, 𝑛𝑖+2 = ∑𝑘 𝑛𝑖𝑘2, etc. leading to

P(𝑋𝑖 = 𝑥𝑘 ∣ Π𝑋𝑖
= 𝜋𝑗) =

𝑛𝑖𝑘𝑗

𝑛𝑖+𝑗
=

cell for 𝑥𝑘 and 𝜋𝑗

column total for 𝜋𝑗
.
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Frequentist Probability Estimates with Low Sample Sizes

Frequentist probability estimates only work well if lots of data are
available. One reason is that their granularity (or their precision, if you
like) depends on 𝑛𝑖+𝑘. Given that

P(𝑋𝑖 = 𝑥𝑘 ∣ Π𝑋𝑖
= 𝜋𝑗) =

𝑛𝑖𝑘𝑗

𝑛𝑖+𝑘

for a given 𝑛𝑖+𝑘 the possible estimates will necessarily come out of the
set

{
0

𝑛𝑖+𝑘
,

1
𝑛𝑖+𝑘

,
2

𝑛𝑖+𝑘
, … ,

𝑛𝑖+𝑘

𝑛𝑖+𝑘
}

with a possible estimation error due to this granularity of 1
2𝑛𝑖+𝑘

.

Consider: if the true value of the probability you are trying to estimate is
0.343 and you only have 𝑛𝑖+𝑘 = 50, with a 1/50 = 0.02 granularity the
closest you can get is 0.34.
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Frequentist Probability Estimates with Low Sample Sizes

Another reason is that if 𝑛𝑖+𝑘 = 0, because the configuration 𝜋𝑘 of the
parentsΠ𝑋𝑖

is not observed in the data, then

P(𝑋𝑖 = 𝑥𝑘 ∣ Π𝑋𝑖
= 𝜋𝑗) =

0
0

which gives you a NaN instead of a usable parameter estimate. If
𝑛𝑖+𝑘 = 1,

P(𝑋𝑖 = 𝑥𝑘 ∣ Π𝑋𝑖
= 𝜋𝑗) =

0 or 1
1

which is not ideal because the true probability we are trying is not likely
to be 0 (the event is impossible) or 1 (the event is certain).

More in general, if the sample size is small rare events are not likely to be
observed and thus be deemed impossible by the model.
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Frequentist Probability Estimates in bn.fit()

The function that performs parameter learning in bnlearn is bn.fit() ,
which takes a network structure (as a bn object) and a data set (as a
data.frame with each column coded as a factor).

survey.data = read.table("survey.txt", stringsAsFactors = TRUE)
survey.fitted = bn.fit(survey.dag, survey.data, method = "mle")

Like custom.fit() , it returns a bn.fit object containing the complete
BN with all the (conditional) probability tables. The method argument
defaults to mle so it can be omitted when estimating frequentist
probabilities.
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Bayesian Probability Estimates

In the Bayesian paradigm, probabilities are a measure of our belief that
an event will happen (or not) and are computed as

prior belief + evidence from data = posterior belief

by weighting prior belief appropriately against the evidence we collect
from the data. From amathematical point of view:

• the evidence from the data are the counts 𝑛𝑖𝑘𝑗;

• we can imagine we have a second set of counts 𝛼𝑖𝑘𝑗 from an
imaginary sample that was collected previously and that is the
source of our prior belief.

• the imaginary sample size determines howmuch weight we give to
our prior beliefs compared to the information coming from the data.
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Bayesian Probability Estimates

In tabular form:

Π𝑋𝑖

𝜋1 𝜋2 ⋯ 𝜋𝑞𝑖

𝑋𝑖

𝑥1 𝛼𝑖11 + 𝑛𝑖11 𝛼𝑖12 + 𝑛𝑖12 ⋯ 𝛼𝑖1𝑞𝑖
+ 𝑛𝑖1𝑞𝑖

𝑥2 𝛼𝑖21 + 𝑛𝑖21 𝛼𝑖22 + 𝑛𝑖22 ⋯ 𝛼𝑖2𝑞𝑖
+ 𝑛𝑖2𝑞𝑖

⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝑟𝑖

𝛼𝑖𝑟𝑖1 + 𝑛𝑖𝑟𝑖1 𝛼𝑖𝑟𝑖2 + 𝑛𝑖𝑟𝑖2 ⋯ 𝛼𝑖𝑟𝑖𝑞𝑖
+ 𝑛𝑖𝑟𝑖𝑞𝑖

𝛼𝑖+1 + 𝑛𝑖+1 𝛼𝑖+2 + 𝑛𝑖+2 ⋯ 𝛼𝑖+𝑞𝑖
+ 𝑛𝑖+𝑞𝑖

leading to the posterior probability

P(𝑋𝑖 = 𝑥𝑘 ∣ Π𝑋𝑖
= 𝜋𝑗) =

𝛼𝑖𝑘𝑗 + 𝑛𝑖𝑘𝑗

𝛼𝑖+𝑗 + 𝑛𝑖+𝑗
.
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Prior Information and Information from the Data

The problem is now how to choose the 𝛼𝑖𝑘𝑗. There are as many prior
probabilities as there are probabilities in the model!

If we do not have enough prior information to make ameaningful choice,
we can always choose the uniform distribution in which

𝛼𝑖𝑘𝑗 =
𝛼
𝑟𝑖𝑞𝑖

for all 𝑗 and 𝑘 in each𝑋𝑖.

• This is the distribution that has the maximum possible entropy, which
implies that it carries the least amount of information. All events are
equally likely because we do not know any better.

• The imaginary sample size is trivially 𝛼 = ∑𝑘 ∑𝑗 𝛼𝑖𝑘𝑗 for all𝑋𝑖.
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Choosing the Imaginary Sample Size

This leaves only a single number to choose: 𝛼. How large it is determines
howmuch weight we give to our prior beliefs compared to the
information contained in the data:

P(𝑋𝑖 = 𝑥𝑘 ∣ Π𝑋𝑖
= 𝜋𝑗) =

𝛼𝑖𝑘𝑗 + 𝑛𝑖𝑘𝑗

𝛼𝑖+𝑗 + 𝑛𝑖+𝑗

=
𝛼𝑖𝑘𝑗

𝛼𝑖+𝑗 + 𝑛𝑖+𝑗⏟⏟⏟⏟⏟
prior

+
𝑛𝑖𝑘𝑗

𝛼𝑖+𝑗 + 𝑛𝑖+𝑗⏟⏟⏟⏟⏟
data

=
𝛼𝑖+𝑗

𝛼𝑖+𝑗 + 𝑛𝑖+𝑗⏟⏟⏟⏟⏟
weight

⋅
𝛼𝑖𝑘𝑗

𝛼𝑖+𝑗⏟
prior

+
𝑛𝑖+𝑗

𝛼𝑖+𝑗 + 𝑛𝑖+𝑗⏟⏟⏟⏟⏟
1 - weight

⋅
𝑛𝑖𝑘𝑗

𝑛𝑖+𝑗⏟
data

= 𝑤
𝛼𝑖𝑘𝑗

𝛼𝑖+𝑗
+ (1 − 𝑤)

𝑛𝑖𝑘𝑗

𝑛𝑖+𝑗
, 𝑤 ∈ (0, 1).
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Choosing the Imaginary Sample Size

The expression of the posterior probability

P(𝑋𝑖 = 𝑥𝑘 ∣ Π𝑋𝑖
= 𝜋𝑗) = 𝑤

𝛼𝑖𝑘𝑗

𝛼𝑖+𝑗
+ (1 − 𝑤)

𝑛𝑖𝑘𝑗

𝑛𝑖+𝑗

is made up by:

• the frequentist probability estimate
𝑛𝑖𝑘𝑗

𝑛𝑖+𝑗
, which is based on the

information present in the data;

• the corresponding prior probability, which in the case of the
uniform prior simplifies to

𝛼𝑖𝑘𝑗

𝛼𝑖+𝑗
=

𝛼
𝑟𝑖𝑞𝑖

⋅
𝑟𝑖

𝛼
=

1
𝑞𝑖

for all probabilities.

• a weight𝑤 = 𝛼𝑖+𝑗

𝛼𝑖+𝑗+𝑛𝑖+𝑗
that is determined by the ratio of the

imaginary sample size and the sample size of the data.
12



Imaginary Sample Size in Pictures

• If the sample size is large compared to the data sample size, the
posterior probabilities will be close to the uniform distribution.

• If the data sample size is large compared to the imaginary sample size,
the posterior probabilities will be close to the frequentist estimates.

iss = seq(from = 10, to = 10000, by = 10)
trace = data.frame(
ISS = iss,
P1 = numeric(length(iss)),
P2 = numeric(length(iss)),
P3 = numeric(length(iss)),
P4 = numeric(length(iss))
)

for (i in seq_along(iss)) {

fitted = bn.fit(survey.dag, survey.data, method = "bayes", iss = iss[i])
trace[i, c("P1", "P2", "P3", "P4")] = as.vector(coef(fitted$O))

}#FOR

13



Imaginary Sample Size in Pictures

Pr(O | E = high)

imaginary sample size

co
nd

iti
on

al
 p

ro
ba

bi
lit

ie
s

0.1

0.3

0.5

0.7

0.9

0 2000 4000 6000 8000 10000

Pr(O = self | E = high)
Pr(O = emp | E = high)

Pr(O | E = uni)

imaginary sample size

co
nd

iti
on

al
 p

ro
ba

bi
lit

ie
s

0.1

0.3

0.5

0.7

0.9

0 2000 4000 6000 8000 10000

Pr(O = self | E = uni)
Pr(O = emp | E = uni)

14



Bayesian Probability Estimates in bn.fit()

The function to use is again bn.fit() , but this time with the argument
method set to bayes to obtain posterior probability estimates.

survey.data = read.table("survey.txt", stringsAsFactors = TRUE)
survey.fitted = bn.fit(survey.dag, survey.data, method = "bayes", iss = 1)

The optional argument iss specifies the imaginary sample size, and it
defaults to 1 (which is the smallest value that makes sense as a sample
size).

15



No More NaNs with Bayesian Probability Estimates

An advantage of Bayesian probabilities is that it is impossible to obtain
NaN estimates. If 𝑛𝑖+𝑘 = 0 then

𝑤 =
𝛼𝑖+𝑗

𝛼𝑖+𝑗 + 0
= 1

and
P(𝑋𝑖 = 𝑥𝑘 ∣ Π𝑋𝑖

= 𝜋𝑗) =
𝛼𝑖𝑘𝑗

𝛼𝑖+𝑗
=

1
𝑞𝑖
.

If we have no information from the data because we do not have any
observation for a particular conditional probability distribution, we fall
back to the uniform distribution provided by the prior. In the case of
frequentist probabilities we can only give up since there is no prior and
we can only rely on the (non-existent) data.

16



Incomplete Data

How do we handle data with missing values? They arise in many fields
for example:

• Faulty sensor readings.

• Values that have been intentionally omitted, such as sensitive (HIV
status) or embarrassing (IQ) information in questionnaires.

• Some variables are unobservable in some situations.

The intuitive answer to this question would be to just throw out the data
with the missing values and keep the data that are completely observed.

However, this only works if the data is missing completely at random. If
that is not the case, we can get probability estimates that are markedly
biased.

17



Classes of Missing Data

There are three classes of missing data:

• Missing completely at random (MCAR): there is no relationship
between the data being missing and any values, observed or
missing. Those missing data points are a random subset of the data.

• Missing at Random (MAR): there is a systematic relationship
between the propensity of values to be missing and the observed
data, but not the missing data.

• Missing Not at Random (MNAR): there is a relationship between the
propensity of a value to bemissing and its values.

MNAR is non-ignorable because the missing data mechanism itself has to
be modelled manually (why the data are missing and what the likely
values are). MCAR and MAR are both considered ignorable because we
don’t have to include any information about the missing data itself when
we deal with the missing data.

18



Representing the Missingness Mechanism

In the context of BNs, each variable has a local distribution
𝑋𝑖 ∼ P(𝑋𝑖 ∣ Π𝑋𝑖

) if the data are complete. If𝑋𝑖 has missing data, in the
MCAR case

𝑋𝑖 ∼ {
P(𝑋𝑖 ∣ Π𝑋𝑖

) for observed data𝑋(𝑂)
𝑖

P(𝑋𝑖 ∣ Π𝑋𝑖
) for missing data𝑋(𝑀)

𝑖 .

The same happens in the MAR case, since the missingness depends on
Π𝑋𝑖

. On the other hand, in the MNAR case

𝑋𝑖 ∼ {
P(𝑋(𝑂)

𝑖 ∣ Π𝑋𝑖
,𝑀) for observed data𝑋(𝑂)

𝑖

P(𝑋(𝑀)
𝑖 ∣ Π𝑋𝑖

,𝑀) for missing data𝑋(𝑀)
𝑖

where𝑀 is the missingness mechanism. 𝑀 is non-ignorable because we
cannot estimate the local distribution of𝑋𝑖 properly without knowing
the missing values in the first place.
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Examples with the Train Use Survey

Since the survey data are collected through a questionnaire, there will be
a positive non-response rate for various questions and for the whole
questionnaire.

• A MCAR situation may arise when questionnaires are lost in the post
– the missingness does not depend on the characteristics of the
individual.

• A MAR situation may arise if women refuse to answer some
questions in the questionnaire in rates significant higher thanmen –
that is fine since S is observed.

• A MNAR situation may arise if all people in a specific big city do not
answer or people of certain social groups do not answer all or part
of the questionnaire – we need to introduce𝑀 to identify the
non-responders.
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Examples with the Train Use Survey
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Manual Approach: a Numeric Example

Consider the following simple numeric example.

inc = data.frame(
A = c(NA, "a1", "a1", "a1", NA),
B = c("b1", "b2", "b1", "b1", "b2"),
C = c("c1", "c1", NA, "c2", NA)

)
inc

A B C
1 <NA> b1 c1
2 a1 b2 c1
3 a1 b1 <NA>
4 a1 b1 c2
5 <NA> b2 <NA>

A

B C

If the data were complete, we could estimate the conditional
probabilities in the BN simply by counting the frequencies of the various
configurations of values.

22



Manual Approach: a Numeric Example

Frequentist probability estimates would look like:

P(A = a1) =
𝑛a1

𝑛
P(A = a2) = 1 − P(A = a1)

P(B = b1 ∣ A = a1) =
𝑛b1,a1

𝑛a1

P(B = b2 ∣ A = a1) = 1 − P(B = b1 ∣ A = a1)

P(B = b1 ∣ A = a2) =
𝑛b1,a2

𝑛a2

P(B = b2 ∣ A = a2) = 1 − P(B = b1 ∣ A = a2)

P(C = c1 ∣ A = a2) =
𝑛c1,a2

𝑛a2

P(C = c2 ∣ A = a1) = 1 − P(C = c1 ∣ A = a1)

P(C = c1 ∣ A = a2) =
𝑛c1,a2

𝑛a2

P(C = c2 ∣ A = a2) = 1 − P(C = c1 ∣ A = a2)
23



Manual Approach: a Numeric Example

Looking at A first, the count we need is

𝑛a1 = 1l(1st observation is a1) + 1l(2nd observation is a1)+
1l(3rd observation is a1) + 1l(4th observation is a1)+

1l(5th observation is a1),

where 1l() is equal to 1 if its argument is true and 0 otherwise.

For the 2nd, 3rd and 4th observations we know that A = a1 , so we can
write

𝑛a1 = 1l(1st observation is a1)+1+1+1+1l(5th observation is a1).

From a different perspective, what we are saying is that we know that
those observations take value a1 with probability 1.

24



Manual Approach: a Numeric Example

If we take this new perspective further, we can then write:

𝑛a1 = P(1st observation is a1) + P(2nd observation is a1)+
P(3rd observation is a1) + P(4th observation is a1)+

P(5th observation is a1).

If we had nomissing values, each of those probabilities would be equal
to either 0 or 1 and tallying them up would give us the usual empirical
frequency 𝑛a1 .
But since have missing values, all we can do is to say

𝑛a1 = P(1st observation is a1)+1+1+1+P(5th observation is a1).

This is easier to work with, because nowwe can use the axioms of
probability to borrow information from the other variables to fill the
missing values.

25



Manual Approach: a Numeric Example

Consider that our BN can be written as

P(A, B, C) = P(A)P(B ∣ A)P(C ∣ A).

We cannot use P(A) to fill in the missing values because from the data we
would guess P(A = a1) = 1 and P(A = a2) = 0 since a2 is never
observed; but that is not desirable if we assume a2 can actually happen.

What we can do is to reverse the dependencies in the model to get

P(A)P(B ∣ A)P(C ∣ A) = P(A)P(B, C ∣ A) = P(A ∣ B, C)P(B, C)

an use P(A ∣ B, C) instead of P(A) to borrow the information from the
other variables.

26



Manual Approach: a Numeric Example

This gets us to

𝑛(0)
a1 = P0(A = a1 ∣ B = b1, C = c1) + 1 + 1 + 1 + P0(A = a1 ∣ B = b1)

and if we assume as a starting point that

P0(A) = { 0.5 for a1
0.5 for a2 P0(A ∣ B, C) = { 0.5 for a1 for all B , C

0.5 for a2 for all B , C

P0(A ∣ B) = { 0.5 for a1 given b1
0.5 for a2 given b2

we can now compute

𝑛(0)
a1 =

1
2
+ 1 + 1 + 1 +

1
2
= 4

as an initial estimate for 𝑛a1 .
27



Manual Approach: a Numeric Example

Replacing 𝑛a1 with 𝑛(0)
a1 , we can estimate

P1(A = a1) =
4
5
= 0.8, P1(A = a2) = 1 − P(A = a1) = 0.2.

Moving to B , what we need to estimate is

P(B = b1 ∣ A = a1) =
𝑛b1,a1

𝑛a1
=

𝑛b1,a1

4

where
𝑛b1,a1 = P(1st observation is b1 , a1) + P(2nd observation is b1 , a1)+

P(3rd observation is b1 , a1) + P(4th observation is b1 , a1)+
P(5th observation is b1 , a1)

= P(1st observation is b1 , a1) + 0 + 1 + 1 + 0
since only for the first observation B = b1 we do not know the value of A .
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Manual Approach: a Numeric Example

We are working with the joint frequencies of A and B ; hence we choose as
starting probabilities the joint uniform

P0(B, A ∣ C) =

⎧{{
⎨{{⎩

0.25 for b1 , a1 for both c1 , c2
0.25 for b1 , a2 for both c1 , c2
0.25 for b2 , a1 for both c1 , c2
0.25 for b2 , a2 for both c1 , c2

so that the probability of the first observation is

P(1st observation is b1 , a1)
= P0(A = a1 ∣ B = b1, C = c1)

=
P0(A = a1, B = b1 ∣ C = c1)

P0(B = b1 ∣ C = c1)

=
P0(A = a1, B = b1 ∣ C = c1)

P0(A = a1, B = b1 ∣ C = c1) + P0(A = a2, B = b1 ∣ C = c1)

=
0.25

0.25 + 0.25
= 0.5.
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Manual Approach: a Numeric Example

We can now compute

𝑛(0)
b1,a1 = 0.5 + 0 + 1 + 1 + 0 = 2.5

and in turn

P(B = b1 ∣ A = a1) =
𝑛(0)
b1,a1

𝑛(0)
a1

=
2.5
4

= 0.625

P(B = b2 ∣ A = a1) = 1 − P(B = b1 ∣ A = a1) = 0.375

which is the first of the two conditional distributions of B .
The second of the two conditional distributions of B is computed in the
same way, starting from

P(B = b1 ∣ A = a2) =
𝑛b1,a2

𝑛a2
=

𝑛b1,a2

𝑛 − 𝑛a1
=

𝑛b1,a2

1
.
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Manual Approach: a Numeric Example

Using the same P0(A ∣ B, C) as before,

𝑛b1,a2 = P(1st observation is b1 , a2) + P(2nd observation is b1 , a2)+
P(3rd observation is b1 , a2) + P(4th observation is b1 , a2)+
P(5th observation is b1 , a2)

= P(1st observation is b1 , a2) + 0 + 0 + 0 + 0,

leading to 𝑛(0)
b1,a2 = 0.5 + 0 + 0 + 0 + 0 = 0.5.

If we replace 𝑛(0)
b1,a2 in the expression above we get

P1(B = b1 ∣ A = a2) =
𝑛(0)
b1,a2

𝑛 − 𝑛(0)
a1

=
0.5

5 − 4
= 0.5,

P1(B = b2 ∣ A = a2) = 1 − P(B = b1 ∣ A = a2) = 0.5.

This makes complete sense: we never observe the combination of values
b1 , a2 so there is no information to learn from the data. 31



Manual Approach: a Numeric Example

As for C , what we need to estimate is

P(C = c1 ∣ A = a1) =
𝑛c1,a1

𝑛a1

where we know that 𝑛(0)
a1 = 4 from before and

𝑛c1,a1 = P(1st observation is c1 , a1) + P(2nd observation is c1 , a1)+
P(3rd observation is c1 , a1) + P(4th observation is c1 , a1)+
P(5th observation is c1 , a1).

The starting probabilities are the joint uniform distribution over C and A

P0(C, A ∣ B) =

⎧{{
⎨{{⎩

0.25 for c1 , a1 given b1 , b2
0.25 for c1 , a2 given b1 , b2
0.25 for c2 , a1 given b1 , b2
0.25 for c2 , a2 given b1 , b2

.
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Manual Approach: a Numeric Example

Considering the partial observations we have for A and C , we can rewrite
the above as:

𝑛(0)
c1,a1 = P0(A = a1 ∣ C = c1, B = b1) + 1+

P0(C = c1 ∣ A = a1, B = b1) + 0+
P0(C = c1, A = a1 ∣ B = b2).

By the axioms of probability,

P0(A ∣ C, B) =
P0(C, A ∣ B)
P0(C ∣ B)

=
P0(C, A ∣ B)

P0(C, A = a1 ∣ B) + P0(C, A = a2 ∣ B)

=
0.25

0.25 + 0.25
= 0.5

P0(C ∣ A, B) =
P0(C, A ∣ B)
P0(A ∣ B)

=
P0(A, C ∣ B)

P0(C = c1, A ∣ B) + P0(C = c2, A ∣ B)

=
0.25

0.25 + 0.25
= 0.5
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Manual Approach: a Numeric Example

As a result, 𝑛(0)
c1,a1 = 0.5 + 1 + 0.5 + 0 + 0.25 = 2.25 and

P1(C = c1 ∣ A = a1) =
𝑛(0)
c1,a1

𝑛(0)
a1

=
2.25
4

= 0.56,

P1(C = c2 ∣ A = a1) = 1 − P(C = c1 ∣ A = a1) = 0.44.

The second conditional distribution of C ,

P(C = c1 ∣ A = a2) =
𝑛c1,a2

𝑛a2
,

requires 𝑛a2 = 1 from before and

𝑛c1,a2 = P(1st observation is c1 , a2) + P(2nd observation is c1 , a2)+
P(3rd observation is c1 , a2) + P(4th observation is c1 , a2)+
P(5th observation is c1 , a2)

= P0(A = a2 ∣ C = c1, B = b1) + 0 + 0 + 0+
P0(C = c1, A = a2 ∣ B = b2) = 0.5 + 0 + 0 + 0 + 0.25 = 0.75.

34



Manual Approach: Summary

This gives the last conditional probability distribution:

P1(C = c1 ∣ A = a2) =
𝑛(0)
c1,a2

𝑛(0)
a2

=
0.75
1

= 0.75,

P1(C = c2 ∣ A = a2) = 1 − P(C = c1 ∣ A = a2) = 0.25.

What did we do?
1. We could not estimate the conditional probabilities due to the

missing values in the data.
2. We assumed all distributions were uniform as a starting point.
3. In the frequencies we needed to estimate the conditional

probabilities, we replaced the missing values with the probabilities
of observing corresponding values.

4. We computed the frequencies, and used them to compute the
conditional probabilities in the BN.
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Manual Approach: Summary

This is what we started from: uniform distributions everywhere.

dag = model2network("[A][B|A][C|A]")
A.prob = array(c(0.5, 0.5), dim = 2, dimnames = list(A = c("a1", "a2")))
B.prob = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2),

dimnames = list(B = c("b1", "b2"), A = c("a1", "a2")))
C.prob = array(c(0.5, 0.5, 0.5, 0.5), dim = c(2, 2),

dimnames = list(C = c("c1", "c2"), A = c("a1", "a2")))
bn.start = custom.fit(dag, list(A = A.prob, B = B.prob, C = C.prob))

coef(bn.start$A)
A
a1 a2
0.5 0.5

coef(bn.start$B)
A

B a1 a2
b1 0.5 0.5
b2 0.5 0.5

coef(bn.start$C)
A

C a1 a2
c1 0.5 0.5
c2 0.5 0.5
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Manual Approach: Summary

A

a1
a2

B

b1
b2

C

c1
c2
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Manual Approach: Summary

This is what we get at the end: updated distributions for all variables.

dag = model2network("[A][B|A][C|A]")
A.prob = array(c(0.8, 0.2), dim = 2, dimnames = list(A = c("a1", "a2")))
B.prob = array(c(0.625, 0.375, 0.5, 0.5), dim = c(2, 2),

dimnames = list(B = c("b1", "b2"), A = c("a1", "a2")))
C.prob = array(c(0.56, 0.44, 0.75, 0.25), dim = c(2, 2),

dimnames = list(C = c("c1", "c2"), A = c("a1", "a2")))
bn.step1 = custom.fit(dag, list(A = A.prob, B = B.prob, C = C.prob))

coef(bn.step1$A)
A
a1 a2
0.8 0.2

coef(bn.step1$B)
A

B a1 a2
b1 0.625 0.500
b2 0.375 0.500

coef(bn.step1$C)
A

C a1 a2
c1 0.56 0.75
c2 0.44 0.25
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Manual Approach: Summary
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end
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The Expectation-Maximisation Algorithm

Iteratively performing the steps above leads to the
Expectation-Maximisation (EM) algorithm, summarised below.

1. Assume some distribution for all the required probability
distributions, such as the uniform distribution.

2. Iterate until convergence:
2.1 E-step: compute the tables of expected frequencies by replacing the

missing values with their probabilities given the observed values for each
observation.

2.2 M-step: compute the probability distributions as if the expected
frequencies were the real frequencies.

The algorithm is guaranteed to converge to the best possible estimates
of the conditional probabilities, defined as those that give the highest
probability to the data. In practice, we can choose to stop when
consecutive iterations do not change first few significant digits of the
probabilities.
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The Expectation-Maximisation Algorithm

In the context of the numeric example above:

E-step M-step

P0(A), P0(B ∣ A), P0(C ∣ A)
𝑛(0)
a1 , 𝑛

(0)
b1,a1 , 𝑛

(0)
b1,a2 , 𝑛

(0)
c1,a1 , 𝑛

(0)
c1,a2

P1(A), P1(B ∣ A), P1(C ∣ A)
𝑛(1)
a1 , 𝑛

(1)
b1,a1 , 𝑛

(1)
b1,a2 , 𝑛

(1)
c1,a1 , 𝑛

(1)
c1,a2

P2(A), P2(B ∣ A), P2(C ∣ A)
𝑛(2)
a1 , 𝑛

(2)
b1,a1 , 𝑛

(2)
b1,a2 , 𝑛

(2)
c1,a1 , 𝑛

(2)
c1,a2

P3(A), P3(B ∣ A), P3(C ∣ A)
𝑛(3)
a1 , 𝑛

(3)
b1,a1 , 𝑛

(3)
b1,a2 , 𝑛

(3)
c1,a1 , 𝑛

(3)
c1,a2

If, say, P3(A) ≈ P2(A), P3(B ∣ A) ≈ P2(B ∣ A), P3(C ∣ A) ≈ P2(C ∣ A), we
can declare that EM has converged and stop.
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Code: Computing 𝑛(0)
a1

grain.start = as.grain(bn.start)
nA = array(c(0, 0), dim = 2, dimnames = list(A = c("a1", "a2")))

for (i in seq(nrow(inc))) {

if (is.na(inc[i, "A"])) {

nA = nA + querygrain(grain.start, node = "A",
evidence = list(B = inc[i, "B"], C = inc[i, "C"]))$A

}#THEN
else {

nA[inc[i, "A"]] = nA[inc[i, "A"]] + 1

}#ELSE

}#FOR

nA
A
a1 a2
4 1
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Code: Computing 𝑛(0)
b1,a1 and 𝑛(0)

b1,a2

nBA = array(rep(0, 4), dim = c(2, 2),
dimnames = list(B = c("b1", "b2"), A = c("a1", "a2")))

for (i in seq(nrow(inc))) {

if (is.na(inc[i, "A"]) || is.na(inc[i, "B"])) {

nBA = nBA + querygrain(grain.start, node = c("B", "A"), type = "joint",
evidence = list(C = inc[i, "C"]))

}#THEN
else {

nBA[inc[i, "B"], inc[i, "A"]] = nBA[inc[i, "B"], inc[i, "A"]] + 1

}#ELSE

}#FOR

nBA
A

B a1 a2
b1 2.5 0.5
b2 1.5 0.5
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Code: Computing 𝑛(0)
c1,a1 and 𝑛(0)

c1,a2

nCA = array(rep(0, 4), dim = c(2, 2),
dimnames = list(C = c("c1", "c2"), A = c("a1", "a2")))

for (i in seq(nrow(inc))) {

if (is.na(inc[i, "A"]) && is.na(inc[i, "C"])) {
nCA = nCA + querygrain(grain.start, node = c("C", "A"), type = "joint",

evidence = list(B = inc[i, "B"]))

}#THEN
else if (is.na(inc[i, "A"]) && !is.na(inc[i, "C"])) {

p = querygrain(grain.start, node = "A",
evidence = list(B = inc[i, "B"], C = inc[i, "C"]))$A

nCA[inc[i, "C"], ] = nCA[inc[i, "C"], ] + p

}#THEN

}#FOR
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Code: Computing 𝑛(0)
c1,a1 and 𝑛(0)

c1,a2

for (i in seq(nrow(inc))) {

if (!is.na(inc[i, "A"]) && is.na(inc[i, "C"])) {

p = querygrain(grain.start, node = "C",
evidence = list(B = inc[i, "B"], A = inc[i, "A"]))$C

nCA[, inc[i, "A"]] = nCA[, inc[i, "A"]] + p

}#THEN
else if (!is.na(inc[i, "A"]) && !is.na(inc[i, "C"])) {

nCA[inc[i, "C"], inc[i, "A"]] = nCA[inc[i, "C"], inc[i, "A"]] + 1

}#ELSE

}#FOR

nCA
A

C a1 a2
c1 2.25 0.75
c2 1.75 0.25
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Code: Computing P1(⋅ ∣ ⋅)

bn.step1 = bn.start
bn.step1$A = prop.table(nA)
bn.step1$B = prop.table(nBA, margin = 2)
bn.step1$C = prop.table(nCA, margin = 2)
coef(bn.step1$A)

A
a1 a2

0.8 0.2
coef(bn.step1$B)

A
B a1 a2
b1 0.625 0.500
b2 0.375 0.500

coef(bn.step1$C)
A

C a1 a2
c1 0.562 0.750
c2 0.438 0.250

grain.step1 = as.grain(bn.step1)
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Code: Computing 𝑛(1)
a1

nA = array(c(0, 0), dim = 2, dimnames = list(A = c("a1", "a2")))

for (i in seq(nrow(inc))) {

if (is.na(inc[i, "A"])) {

nA = nA + querygrain(grain.step1, node = "A",
evidence = list(B = inc[i, "B"], C = inc[i, "C"]))$A

}#THEN
else {

nA[inc[i, "A"]] = nA[inc[i, "A"]] + 1

}#ELSE

}#FOR

nA
A

a1 a2
4.539 0.461
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Code: Computing 𝑛(0)
b1,a1 and 𝑛(0)

b1,a2

nBA = array(rep(0, 4), dim = c(2, 2),
dimnames = list(B = c("b1", "b2"), A = c("a1", "a2")))

for (i in seq(nrow(inc))) {

if (is.na(inc[i, "A"]) || is.na(inc[i, "B"])) {

nBA = nBA + querygrain(grain.step1, node = c("B", "A"), type = "joint",
evidence = list(C = inc[i, "C"]))

}#THEN
else {

nBA[inc[i, "B"], inc[i, "A"]] = nBA[inc[i, "B"], inc[i, "A"]] + 1

}#ELSE

}#FOR

nBA
A

B a1 a2
b1 2.97 0.581
b2 1.23 0.225
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Code: Computing 𝑛(1)
c1,a1 and 𝑛(1)

c1,a2

nCA = array(rep(0, 4), dim = c(2, 2),
dimnames = list(C = c("c1", "c2"), A = c("a1", "a2")))

for (i in seq(nrow(inc))) {

if (is.na(inc[i, "A"]) && is.na(inc[i, "C"])) {
nCA = nCA + querygrain(grain.step1, node = c("C", "A"), type = "joint",

evidence = list(B = inc[i, "B"]))

}#THEN
else if (is.na(inc[i, "A"]) && !is.na(inc[i, "C"])) {

p = querygrain(grain.step1, node = "A",
evidence = list(B = inc[i, "B"], C = inc[i, "C"]))$A

nCA[inc[i, "C"], ] = nCA[inc[i, "C"], ] + p

}#THEN

}#FOR
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Code: Computing 𝑛(1)
c1,a1 and 𝑛(1)

c1,a2

for (i in seq(nrow(inc))) {

if (!is.na(inc[i, "A"]) && is.na(inc[i, "C"])) {

p = querygrain(grain.step1, node = "C",
evidence = list(B = inc[i, "B"], A = inc[i, "A"]))$C

nCA[, inc[i, "A"]] = nCA[, inc[i, "A"]] + p

}#THEN
else if (!is.na(inc[i, "A"]) && !is.na(inc[i, "C"])) {

nCA[inc[i, "C"], inc[i, "A"]] = nCA[inc[i, "C"], inc[i, "A"]] + 1

}#ELSE

}#FOR

nCA
A

C a1 a2
c1 2.77 0.5387
c2 1.62 0.0625
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Code: Computing P2(⋅ ∣ ⋅)

bn.step2 = bn.start
bn.step2$A = prop.table(nA)
bn.step2$B = prop.table(nBA, margin = 2)
bn.step2$C = prop.table(nCA, margin = 2)
coef(bn.step2$A)

A
a1 a2

0.9079 0.0921
coef(bn.step2$B)

A
B a1 a2
b1 0.708 0.721
b2 0.292 0.279

coef(bn.step2$C)
A

C a1 a2
c1 0.631 0.896
c2 0.369 0.104

51



Code: Comparing P1(⋅ ∣ ⋅) and P2(⋅ ∣ ⋅)

A

a1
a2

B

b1
b2

C

c1
c2

step 1

A

a1
a2

B

b1
b2

C

c1
c2

step 2
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Summary and Remarks

• Learning the parameters of a Bayesian network is a direct application
of probability theory.

• There are twomain paradigms: frequentist and Bayesian.

• The Bayesian approach performs better with small samples and
always produced well-formed estimates without NaNs.

• The EM algorithmmakes it possible to use incomplete data containing
missing values to learn the parameters of a BN.
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Thanks!

Any questions?
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