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Introduction

Learning a Bayesian network (BN)ℬ = (𝒢, Θ) from a data set𝒟 involves:

P(ℬ ∣ 𝒟) = P(𝒢, Θ ∣ 𝒟)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
learning

= P(𝒢 ∣ 𝒟)⏟⏟⏟⏟⏟
structure learning

⋅ P(Θ ∣ 𝒢, 𝒟)⏟⏟⏟⏟⏟
parameter learning

.

What are we assuming when trying to learn a BN? Typically that:
• observations are independent and identically distributed;
• there are nomissing values;
• all variables are observed, that is, there are no latent variables
introducing confounding in the model.

We revisit the implications of relaxing the first assumption, allowing for
the data to be a collation of heterogeneous but related data sets. In our
previous work [1], we attacked this problem for discrete data; here we
consider continuous data and outline further extensions to hybrid and
structured data.
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Homogeneous Data and Heterogeneous Data

If the data are homogeneous, all observations are independent and
identically distributed:

x𝑘 ∼ ℬ with a common BN ℬ = (𝒢, Θ) for all observations x𝑘.

Instead, we assume that observations belong to 𝐹 = 1, … , 𝑓 related data
sets that share the same structure but have different parameters:

x𝑘,𝑗 ∼ ℬ𝑗 with ℬ𝑗 = (𝒢, Θ𝑗) for some 𝑗 ∈ {1, … , 𝑓}.

Our aim is to model data that arise from the same generating model
(hence the shared structure) but are collected under somehat different
conditions, with somewhat different protocols or from somewhat
different popuplations (hence the different parameters). This is what we
call related data sets.
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Complete Pooling: Gaussian BNs

Let’s assume that all the variables X = {𝑋𝑖, 𝑖 = 1, … , 𝑁} in the data are
continuous, and that we knowwhich observation belongs to which
related data set (that is, 𝐹 is known for all observations).

One option is to disregard the heterogeneous nature of the data and
model themwith a Gaussian BN (GBN) overX. This is a complete pooling
of the information in the related data sets into a single model, with local
distributions:

𝑋𝑖 = 𝜇𝑖 + 𝚷𝑋𝑖
𝜷𝑖 + 𝜀𝑖, 𝜀𝑖 ∼ 𝑁(0, 𝜎2

𝑖 I𝑛).

PROS: the parametrisation is simple, because X is a multivariate normal
distribution and the 𝑋𝑖 are linear regression models.

CONS: since we disregard 𝐹, the BN is a biasedmodel. All observations
are modelled with the same parameters as if they were homogeneous.
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No Pooling: Conditional Gaussian BNs

At the oposite end of the spectrum, we could define a conditional
Gaussian BN (CGBN) over {X, 𝐹} andmake 𝐹 a parent of each 𝑋𝑖 so that

𝑋𝑖𝑗 = 𝜇𝑖𝑗 + 𝚪𝑋𝑖
𝜷𝑖𝑗 + 𝜀𝑖𝑗,

𝜀𝑖𝑗 ∼ 𝑁(1, 𝜎2
𝑖𝑗I𝑛𝑗

), 𝑗 = 1, … , 𝑓, ∑
𝑗
𝑛𝑗 = 𝑛, 𝚪𝑋𝑖

= 𝚷𝑋𝑖
∩ X.

We have no pooling of information: each related data set is modelled by
a separate linear regression model whose parameters are learned only
from that data set’s observations.

PROS: the BN is not biased since it can model the heterogeneity in the
data. The parametrisation is still fairly simple: X is a mixture of
multivariate normals and 𝑋𝑖 are mistures of linear regression models.

CONS: the BN does not leverage the assumption that the data sets are
related, which implies that the parameters should be similar across
them.
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Partial Pooling: Mixed-Effects Models inside CGBNs

In between these two extremes, we choose to use mixed-effects models
(LMEs) [2, 3] as the local distributions for the 𝑋𝑖:

𝑋𝑖 = 𝜇𝑖 + 𝚷𝑋𝑖
𝜷𝑖 + Z𝑖b𝑖 + 𝜀𝑖, b𝑖 ∼ 𝑁(0, 𝚺𝑖), 𝜀𝑖 ∼ 𝑁(0, 𝜎2

𝑖 I𝑛),

where
• 𝚷𝑋𝑖

is the design matrix associated to the 𝚪𝑋𝑖
;

• 𝜷𝑖 is the vector of fixed effects;
• Z𝑖 is the design matrix of the random effects, which encodes which
observation belongs to which related data set;

• b𝑖 is the vector of random effects.

LMEs perform a partial pooling of information: they implictly shrink of
the parameters associated to the related data sets towards their
common average (the fixed effects) based on sample and effect sizes.
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Partial Pooling: Mixed-Effects Models inside CGBNs

When used as a local distribution, an LME with random effects for all the
parents can be written in the same form as the local distribution of a
continuous variable in a CGBN:

𝑋𝑖𝑗 = (𝜇𝑖𝑗 + 𝑏𝑖𝑗0) + 𝚷𝑋𝑖
(𝜷𝑖 + b𝑖𝑗) + 𝜀𝑖𝑗,

( 𝑏𝑖𝑗0
b𝑖𝑗

) ∼ 𝑁(0, 𝚺̃𝑖), 𝜀𝑖𝑗 ∼ 𝑁(0, 𝜎2
𝑖 I𝑛𝑗

),

The random effects represent the deviations of the regression
coefficients for the individual related data sets from the fixed effects.
PROS: the BN is unbiased and uses the information in the related data
sets to the best effect, pooling information and regularising the
parameters through shrinkage.

CONS: learning is somewhat slower since the local distributions are more
complex.
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GBNs, CGBNs, BNs with LMEs

X1 X2

X3

X4

X5

F F F

GBN CGBN BN + LMEs

X1 1; 2;X2

3;X3

4;X4

5;X5

X1 1; 1, X2 2; 2,

X3 3; 3,

X4 4; 4,

X5 5; 5,
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Design of the Simulation Study

We studied the properties of this choice of local distributions with a
simulation study spanning:
1. 5 DAGs for each combination of 𝑁 = 10, 20, 50, |Π𝑋𝑖

| = 1, 2, 4,
|𝐹 | = 2, 5, 10, 20, 50, and arcs pointing from 𝐹 to each node.

2. For each DAG, for each 𝑋𝑖 and each related data set, we sample

𝜷𝑖𝑗 ∼ 𝑁(𝜷𝑖 + b𝑖𝑗, 𝜎2
𝜷𝑖𝑗

I|Π𝑋𝑖|+1),

𝜷𝑖 = 2, b𝑖𝑗 ∼ 𝑁(0, I|Π𝑋𝑖|+1), 𝜎2
𝜷𝑖𝑗

∼ 𝜒2
1

and we set the standard error of the residuals 𝜎2
𝑖𝑗 so that the Π𝑋𝑖

explain 85% of the variance of 𝑋𝑖.

We generate 5 data sets for each of 𝑛𝑗 = 10, 20, 50, 100 from each
generating model ℬTRUE. For each data set, we learn a GBN on X
(ℬGBN, complete pooling), a CGBN on {X, 𝐹} (ℬCGBN, no pooling) and
our LME solution on {X, 𝐹} (ℬLME, partial pooling). Structure learning
is implemented using hill-climbing and BIC.
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Balanced Data Sets
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ℬLME have lower SHD and KL than ℬGBN for 95% of the data sets. 2



Balanced and Unbalanced Data Sets
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Themore the related data sets have unbalanced sample sizes, the more ℬLME
dominates ℬCGBN. This is the result of pooling information between related
data sets: those that have fewer observations borrow information from the
larger ones, thus allowing us to learn more accurate models. ℬCGBN do not
perform any pooling and therefore perform increasingly poorly. 3



Homogeneous Data

What if there is no heterogeneity in the data, but we use ℬLME anyway?
In this scenario, ℬGBN is the correctly specified model while both ℬLME
and ℬCGBN are over-parametrised.
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Conclusions and Extensions

• The automatic pooling of information between the related data sets
results in BNs with better structural and parametric accuracy for small
sample sizes and unbalanced data sets.

• Using LMEs as local distributions outperforms GBNs. It is at least as
good as using standard CGBNs in terms of SHD, and outperforms
CGBNs in terms of KL.

• LMEs perform well even when the data are homogeneous.

• We can domore!

• We can drop the assumption that 𝐹 is a parent of all other nodes.

• Generalised LMEs as local distributions can handle a diverse set of
distributions.

• LMEs canmodel more complex structures in the data: cryptic relatedness
(in genetics), spatial dependencies, temporal dependencies.
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Thanks!

Any questions?
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