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Overview

• Learning the structure of Bayesian networks from data is known to be
a computationally challenging, NP-hard problem [2, 4, 6].

• Greedy search is the most common score-based heuristic for structure
learning, how challenging is it in terms of computational complexity?
• For discrete data;

• for continuous data;

• for hybrid (discrete + continuous) data;

• for big data (n� N and/or n� |Θ|).

• How are scores computed, and can we do better by revisiting learning
• from classic statistics?

• from a machine learning perspective?



Bayesian Networks and Structure

Learning
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Bayesian Networks: A Graph and a Probability Distribution

A Bayesian network [15, BN] is defined by:

• a network structure, a directed acyclic graph G in which each node
vi ∈ V corresponds to a random variable Xi;

• a global probability distribution P(X) with parameters Θ, which
can be factorised into smaller local probability distributions
according to the arcs present in the graph.

The main role of the network structure is to express the conditional
independence relationships among the variables in the model through
graphical separation, thus specifying the factorisation of the global
distribution:

P(X) =

p∏
i=1

P(Xi | ΠXi ; ΘXi) where ΠXi = {parents of Xi}.
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Common Distributional Assumptions

The three most common choices for P(X) in the literature (by far), are:

• Discrete BNs [13], in which X and the Xi | ΠXi are multinomial:

Xi | ΠXi ∼ Mul(πik|j), πik|j = P(Xi = k | ΠXi = j).

• Gaussian BNs [11, GBNs], in which X is multivariate normal and
the Xi | ΠXi are univariate normals linked by linear dependencies:

Xi | ΠXi ∼ N(µXi + ΠXiβXi
, σ2

Xi
),

which can be equivalently written as a linear regression model

Xi = µXi + ΠXiβXi
+ εXi , εXi ∼ N(0, σ2

Xi
).
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Common Distributional Assumptions

• Conditional linear Gaussian BNs [17, CLGBNs], in which X is a
mixture of multivariate normals. Discrete Xi | ΠXi are multinomial
and are only allowed to have discrete parents (denoted ∆Xi).
Continuous Xi are allowed to have both discrete and continuous
parents (denoted ΓXi , ∆Xi ∪ ΓXi = ΠXi). Their local distributions
are

Xi | ΠXi ∼ N
(
µXi,δXi

+ ΓXiβXi,δXi
, σ2

Xi,δXi

)
,

which can be written as a mixture of linear regressions

Xi = µXi,δXi
+ ΓXiβXi,δXi

+ εXi,δXi
, εXi,δXi

∼ N
(

0, σ2
Xi,δXi

)
,

against the continuous parents with one component for each
configuration δXi ∈ Val(∆Xi) of the discrete parents.

Other, less common options: copulas [9], truncated exponentials [18].
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Bayesian Network Structure Learning

Learning a BN B = (G,Θ) from a data set D is performed in two steps:

P(B | D) = P(G,Θ | D)︸ ︷︷ ︸
learning

= P(G | D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

.

In a Bayesian setting structure learning consists in finding the DAG with the
best P(G | D) (BIC [20] is a common alternative) with some search algorithm.
We can decompose P(G | D) into

P(G | D) ∝ P(G) P(D | G) = P(G)

∫
P(D | G,Θ) P(Θ | G)dΘ

where P(G) is the prior distribution over the space of the DAGs and P(D | G)
is the marginal likelihood of the data given G averaged over all possible
parameter sets Θ; and then

P(D | G) =

N∏
i=1

[∫
P(Xi | ΠXi

,ΘXi
) P(ΘXi

| ΠXi
)dΘXi

]
.

where ΠXi
are the parents of Xi in G.
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Structure Learning Algorithms

Structure learning algorithms fall into one three classes:

• Constraint-based algorithms identify conditional independence
constraints with statistical tests, and link nodes that are not found
to be independent. PC [7], HITON-PC [1].

• Score-based algorithms are applications of general optimisation
techniques; each candidate network is assigned a score to maximise
as the objective function. Heuristics [19], MCMC [16], exact [22]

• Hybrid algorithms have a restrict phase implementing a
constraint-based strategy to reduce the space of candidate
networks; and a maximise phase implementing a score-based
strategy to find the optimal network in the restricted space.
MMHC [23], H2PC [10].



Bayesian Networks and Structure Learning Marco Scutari, IDSIA

Greedy Search is the Most Common Baseline

Here we concentrate on score-based algorithms and in particular greedy
search because

• it is one of the most common algorithms in practical applications;

• when used in combination with BIC, it has the appeal of being
simple to reason about;

• there is evidence it performs well compared to constraint-based and
score-based algorithms [21].

We apply greedy search to modern data which can be

• with a large sample size, but not necessarily a large number of
variables (n� N) or parameters (n� |Θ|); and

• heterogeneous, with both discrete and continuous variables.



Computational Complexity of

Greedy Search
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Pseudocode for Greedy Search

Input: a data set D, an initial DAG G, a score function Score(G,D).
Output: the DAG Gmax that maximises Score(G,D).

1. Compute the score of G, SG = Score(G,D).

2. Set Smax = SG and Gmax = G.

3. Hill climbing: repeat as long as Smax increases:

3.1 for every valid arc addition, deletion or reversal in Gmax :

3.1.1 compute the score of the modified DAG G∗, SG∗ = Score(G∗,D):

3.1.2 if SG∗ > Smax and SG∗ > SG , set G = G∗ and SG = SG∗ .

3.2 if SG > Smax , set Smax = SG and Gmax = G.

4. Tabu search: for up to t0 times:

4.1 repeat step 3 but choose the DAG G with the highest SG that has not been
visited in the last t1 steps regardless of Smax ;

4.2 if SG > Smax , set S0 = Smax = SG and G0 = Gmax = G and restart the search
from step 3.

5. Random restart: for up to r times, perturb Gmax with multiple arc additions, deletions

and reversals to obtain a new DAG G′ and:

5.1 set S0 = Smax = SG and G0 = Gmax = G and restart the search from step 3;

5.2 if the new Gmax is the same as the previous Gmax , stop and return Gmax .
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Computational Complexity

The following assumptions are standard in the literature:

1. Estimating each local distribution is O(1); that is, the overall
computational complexity of an algorithm is measured by the
number of estimated local distributions.

2. Model comparisons are assumed to always add, delete and reverse
arcs correctly with respect to the underlying true model, since
marginal likelihoods and BIC are globally and locally consistent [3].

3. The true DAG is sparse and contains O(cN), c ∈ [1, 5] arcs.

They resulting expression for the the computational complexity is:

O(g(N)) = O
(
cN3︸︷︷︸

steps 1–3

+ t0N
2︸ ︷︷ ︸

step 4

+ r0(r1N
2 + t0N

2)︸ ︷︷ ︸
step 5

)
= O

(
cN3 + (t0 + r0(r1 + t0))N2

)
.
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Caching Local Distributions

Caching local distributions reduces the leading term to O(cN2) because

• Adding or removing an arc only alters a single P(Xi | ΠXi).

• Reversing an arc Xj → Xi to Xi → Xj alters both P(Xi | ΠXi)
and P(Xj | ΠXj ).

Hence, we can keep a cache of the score values of the N local
distributions for the current Gmax , and of the N2 −N differences

∆ij = ScoreGmax (Xi,Π
Gmax
Xi

,D)− ScoreG∗(Xi,Π
G∗
Xi
,D), i 6= j;

so that we only have to estimate N or 2N local distributions for the
nodes whose parents changed in the previous iteration (instead of N2).
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Are They Really All the Same?

Estimating a local distribution in a discrete BN requires a single pass
over the n samples for Xi and the ΠXi (taken to have l levels each):

O(fΠXi
(Xi)) = O

(
n(1 + |ΠXi |)︸ ︷︷ ︸

counts

+ l1+|ΠXi
|︸ ︷︷ ︸

probabilities

)
.

In a GBN, a local distribution is essentially a linear regression model and
thus is usually estimated by applying a QR decomposition on [1 ΠXi ]:

O(fΠXi
(Xi)) = O

(
n(1 + |ΠXi |)2

)︸ ︷︷ ︸
QR decomposition

+O (n(1 + |ΠXi |))︸ ︷︷ ︸
computing QTXi

+

O
(
(1 + |ΠXi |)2

)︸ ︷︷ ︸
backwards substitution

+O (n(1 + |ΠXi |))︸ ︷︷ ︸
computing x̂i

+ O (3n)︸ ︷︷ ︸
computing σ̂2

Xi

.
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Are They Really All the Same?

In a CLGBN, the local distribution of a continuous node with ΓXi

continuous parents and ∆Xi discrete parents is a mixture of linear
regressions, each estimated with QR:

O(fΠXi
(Xi)) =

= O
(

(n+ l|∆Xi
|)(1 + |ΓXi |)2

)
+O (2n(1 + |ΓXi |)) +O (3n) .

The local distribution of a discrete node is computed in the same way as
in a discrete BN.

It is clear that the computational complexity of estimating local
distributions is very different under different distributional assumptions,
so the O(1) assumption does not hold. What does that mean for greedy
search?
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A Realistic Computational Complexity: Discrete BNs

Replacing O(1) in the computational complexity of greedy search with
that of the local distributions in discrete BNs we get

O(g(N,d)) =

N∑
i=1

|ΠXi
|+1∑

j=1

N−1∑
k=1

O(n(1 + j) + l1+j)

= O

(
ncN2 + nN

N∑
i=1

|ΠXi |2

2
+Nl2

N∑
i=1

l|ΠXi
|+1 − 1

l − 1

)
.

This implies that if G is sparse (|ΠXi | 6 b) complexity is O(nN2):

O(g(N,d)) = O

(
N2

[
nc+ n

b2

2
+ l2

lb+1 − 1

l − 1

])
;

and O(nN2lN ) if G is dense (|ΠXi | = O(N)):

O(g(N,d)) = O

(
N2

[
nc+ n

N3

2
+ l2

lN − 1

l − 1

])
.
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A Realistic Computational Complexity: GBNs and CLGBNs

The corresponding computational complexity in the case of GBNs is

O(g(N,d)) = O

(
nN

N∑
i=1

|ΠXi |3

3

)
,

which is polynomial even if G is dense. For CLGBNs with M continuous
nodes and N −M discrete nodes, we have a complicated expression
that combines the previous two. It tells us that:

• O(g(N,d)) is always linear in the sample size;

• unless the number of discrete parents is bounded for both discrete
and continuous nodes, O(g(N,d)) is again more than exponential;

• if the proportion of discrete nodes is small, we can assume that
M ≈ N and O(g(N,d)) is always polynomial.



Revisiting from Classic Statistics

and Machine Learning
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Greedy Search and Low-Order Regressions

If we assume that G is sparse, most nodes will have a small number of
parents and the vast majority of the local distributions we estimate will
be low-dimensional. If we start the search from an empty DAG, we need
to estimate local distributions

• with j = 0, 1 for all nodes;

• those with j = 2 for all non-root nodes;

• a vanishingly small number with j > 3.

Hence optimising how we estimate local distributions with j = 0, 1, 2
parents can have an important impact on the overall computational
complexity; especially in the case of GBNs and CLGBNs which do not
scale linearly in N .
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Linear Regressions with Zero, One and Two Parents

• j = 0 gives the trivial regression Xi = µXi + εXi .

• j = 1 gives the simple regression with:

β̂Xj =
COV(Xi, Xj)

VAR(Xi)
.

• j = 2 gives a regression with two explanatory variables and [25]

β̂Xj =
1

d

[
VAR(Xk) COV(Xi, Xj)− COV(Xj , Xk) COV(Xi, Xk)

]
,

β̂Xk
=

1

d

[
VAR(Xj) COV(Xi, Xk)− COV(Xj , Xk) COV(Xi, Xj)

]
;

with d = VAR(Xj) VAR(Xk)− COV(Xj , Xk).

In all cases we can compute closed-form estimators from variances and
covariances, which are faster to compute (and to cache) than QR
decompositions.
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How Much Faster?

for GBNs:

j with QR closed-form

0 O(6n) O(4.5n)

1 O(9n) O(7n)

2 O(16n) O(10.5n)

for CLGBNs:

j with QR closed-form

0 O
(
6n+ lDXi

)
O(4.5n)

1 O
(
11n+ 4lDXi

)
O(7n)

2 O
(
18n+ 9lDXi

)
O(10.5n)
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Predictions as Scores, the Machine Learning Way

Chickering and Heckerman suggested [5] using predictive posterior
probability as the score function to select the optimal DAG,

Score(G,D) = log P(Dtest | G,Θ,Dtrain), D = Dtrain ∪ Dtest;

effectively maximising the negative cross-entropy between the “correct”
posterior distribution of Dtest and that determined by G,Dtrain. This is
called the engineering criterion.

As is the case for many machine learning models [12, e.g., deep neural
networks], prediction is computationally much cheaper than estimation
because it does not involve solving an optimisation problem.
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Prediction vs Estimation

The computational complexity of prediction is:

• O(N |Dtest|) for discrete BNs, because we just have to perform an
O(1) look-up to collect the relevant conditional probability for each
node and observation;

• O(cN |Dtest|) for GBNs and CLGBNs, because for each node and

observation we need to compute Π
(n+1)
Xi

β̂Xi .

In contrast the computational complexity of estimating local
distributions is higher than O(N) for both GBN and CLGBNs, while it is
the same for discrete BNs.

Hence the proportion of D used as Dtest will control the computational
complexity of scoring nodes, since the per-node cost of prediction is
smaller than that of estimation.



Can We Do Better?
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Simulations from the MEHRA Network

Altitude

blh

co

CVD60

Day

Hour

Latitude
Longitude

Month

no2o3

pm10

pm2.5

Region

Season

so2

ssr
t2m

tp

Type

wd ws

Year
Zone

MEHRA [24]: 24 variables, 50 million observations to explore the interplay between
environmental factors, exposure levels to outdoor air pollutants, and health outcomes in the
English regions of the United Kingdom between 1981 and 2014.
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Simulation Setting

1. We consider sample sizes of 1, 2, 5, 10, 20 and 50 millions;

2. For each sample size, we generate 5 data sets from the CLGBN
learned from the MEHRA data set;

3. For each sample, we learn back the structure of the BN using greedy
search in combination with various optimisations:
• QR: estimating all Gaussian and conditional linear Gaussian local

distributions using the QR decomposition, and BIC as the score function;
• 1P: using the closed-form estimates for the local distributions that involve

0 or 1 parents, and BIC as the score function;
• 2P: using the closed-form estimates for the local distributions that involve

0, 1 or 2 parents, and BIC as the score functions;
• PRED: using the closed-form estimates for the local distributions that

involve 0, 1 or 2 parents for learning the local distributions on 75% of the
data and estimating posterior predictive probabilities on the remaining
25%.
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Running Times and Structural Errors

sample size (in millions, log−scale)
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Simulations from Reference Data Sets

We confirm the improvements in running times on 5 reference data sets
from the UCI Machine Learning Repository [8] and from the repository
of the Data Exposition Session of the Joint Statistical Meetings [14,
JSM].

Data sample size discrete nodes continuous nodes

AIRLINE 53.6× 106 9 19

GAS 4.2× 106 0 37

HEPMASS 10.5× 106 1 28

HIGGS 11.0× 106 1 28

SUSY 5.0× 106 1 18
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Running Times on the Reference Data Sets

data sets
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Conclusions

• The assumption that estimating local distributions can be treated as
an O(1) operation, regardless of the number of parents and
distributional assumptions, is violated in practice.

• The computational complexity of greedy search is markedly different
for different distributional assumptions and graph sparsity.

• In light of this, we can revisit how we score nodes using foundational
results from classic statistics and speed up learning of both GBNs and
CLGBNs.

• And taking a machine learning perspective on scoring we can further
speed up structure learning for all types of BNs by using predictive
posterior probabilities as network scores.



Thanks!
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