
bnlearn
Learning Bayesian Networks 10 Years Later

Marco Scutari

scutari@stats.ox.ac.uk
Department of Statistics

University of Oxford

September 19, 2017

mailto:scutari@stats.ox.ac.uk

bnlearn, an R package for Bayesian networks

bnlearn aspires to provide a free-software implementation of the
scientific literature on Bayesian networks (BNs) for

• learning the structure of the network;

• for a given structure, learning the parameters;

• perform inference, mainly in the form of conditional probability
queries.

It also tries to

• provide import and export functions to integrate other software and
R packages; and

• use R plotting facilities to create publication-quality plots.

Marco Scutari University of Oxford

It All Began Here

commit ? search:

bnlearn R package RSSAtom

projects / bnlearn / commit

summary | shortlog | log | commit | commitdiff | tree
(initial) | patch

Initial commit (v 0.1).

author Marco Scutari <fizban@pluto.it>

Tue, 12 Jun 2007 18:53:43 +0000 (20:53 +0200)

committer Marco Scutari <fizban@pluto.it>

Tue, 12 Jun 2007 18:53:43 +0000 (20:53 +0200)

commit b8c24c841b6941fc631031ba061fbd3b0ac71de6

tree 48ad0bfcc78e0123df87bdc82b74d195ce46877b tree | snapshot

Initial commit (v 0.1).

DESCRIPTION [new file with mode: 0644] blob

NAMESPACE [new file with mode: 0644] blob

R/cibn.R [new file with mode: 0644] blob

R/test.R [new file with mode: 0644] blob

R/utils.R [new file with mode: 0644] blob

man/bnlearn-package.Rd [new file with mode: 0644] blob

man/gs.Rd [new file with mode: 0644] blob

Today: 17K lines of R code, 18K lines of C, and 5K lines of unit tests R code.

Marco Scutari University of Oxford

The Scope and Philosophy of bnlearn

bnlearn is designed to provide a flexible simulation suite for
methodological research and effective and scalable data analysis tools
for working with real-world data.

Data

(data frame)

Learned Network

(class bn)

Expert Knowledge

(priors, whitelist, blacklist, ...)

Learned Parameters

(class bn.fit)

Expert System

(class bn.fit)

Expert Network

(class bn)

Inference

(cpquery and cpdist)

Prediction

(predict)

Simulation

(rbn and cpdist)

Plots

(lattice and Rgraphviz)

BN Repository

(class bn.fit)

Marco Scutari University of Oxford

Separation of Concerns and Modularity

This is achieved by a modular architecture in which algorithms are
decoupled from model assumptions, to make it possible to mix and
match the methods found in the literature. For instance, for discrete
data

dag = hc(learning.test, score = "bic")

but we can use the same structure learning algorithm with a different
score if the data are continuous

dag = hc(gaussian.test, score = "bic-g")

or we can use the same score with a different algorithm.

dag = tabu(gaussian.test, score = "bic-g")

Finally, bnlearn tries to guess sensible defaults for the arguments from
the data, so command lines can be rather compact.

Marco Scutari University of Oxford

Two Case Studies:

Statistical Genetics

and

Environmental Statistics

Marco Scutari University of Oxford

Two Case Studies

Case Study: Statistical Genetics

DNA is routinely used in statistical genetics to understand human diseases, and
to breed traits of commercial interest in plants and animals. One example is
disease resistance in wheat, which I studied using data with 721 varieties, 16K
genes, 7 traits. (I ran the same analysis on rice with similar results.)

Traits of interest for plants typically include flowering time, height, yield, and
disease scores. The goal of the analysis is to find key genes controlling the
traits; to identify any causal relationships between them; and to keep a good
predictive accuracy.

Multiple Quantitative Trait Analysis Using Bayesian
Networks
M. Scutari et al., Genetics, 198, 129–137 (2014);
DOI: 10.1534/genetics.114.165704

In the spirit of classic statistical genetics models, I used a Gaussian BN.

Marco Scutari University of Oxford

Two Case Studies

Bayesian Networks in Genetics

If we have a set of traits and genes for each variety, all we need are the
Markov blankets of the traits; most genes are discarded in the process.
Using common sense, we can make some assumptions:

• traits can depend on genes, but not vice versa;

• dependencies between traits should follow the order of the
respective measurements (e.g. longitudinal traits, traits measured
before and after harvest, etc.).

Assumptions on the direction of the dependencies reduce Markov
blanket learning to learning the parents and the children of each trait,
which is a much simpler task.

bnlearn provides tools for all these tasks: learn.mb(), learn.nbr(),
hc(), whitelists and blacklists.

Marco Scutari University of Oxford

Two Case Studies

Learning The Structure

fit.the.model = function(data, traits, genes, alpha) {
qtls = vector(length(traits), mode = "list")

names(qtls) = traits

find the parents and children of each trait.

for (q in seq_along(qtls)) {
BLUP away the family structure.

m = lmer(as.formula(paste(traits[q], "~ (1|FUNNEL:PLANT)")), data = data)

data[!is.na(data[, traits[q]]), traits[q]] = data[, traits[q]] -

ranef(m)[[1]][paste(data$FUNNEL, data$PLANT, sep = ":"), 1]

identify parents and children.

qtls[[q]] = learn.nbr(data[, c(traits, genes)], node = traits[q],

method = "si.hiton.pc", test = "cor", alpha = alpha)

}#FOR
yield has no children, and genes cannot depend on traits.

nodes = unique(c(traits, unlist(qtls)))

blacklist = tiers2blacklist(list(nodes[nodes %in% genes],

c("FT", "HT"),

traits[!(traits %in% c("YLD", "FT", "HT"))], "YLD"))

build the overall network.

hc(data[, nodes], blacklist = blacklist)

}#FIT.THE.MODEL

Marco Scutari University of Oxford

Two Case Studies

Model Averaging and Assessing Predictive Accuracy

With cross-validation we can assess predictive accuracy and produce an
averaged, de-noised consensus network with model averaging.

bnlearn implements both with bn.cv() and averaged.network(), but
makes it easy to code custom implementations for complex analyses.

Marco Scutari University of Oxford

Two Case Studies

Performing Cross-Validation (Single Fold)
predicted = parLapply(kcv, cl = cluster, function(test) {

create matrices to store the predicted values.

pred = matrix(0, nrow = length(test), ncol = length(traits))

post = matrix(0, nrow = length(test), ncol = length(traits))

colnames(pred) = colnames(post) = traits

split training and test.

dtraining = data[-test,]

dtest = data[test,]

fit the model on the training data.

model = fit.the.model(dtraining, traits, genes, alpha = alpha)

fitted = bn.fit(model, dtraining[, nodes(model)])

subset the test data.

dtest = dtest[, nodes(model)]

predict each trait in turn, given all the parents.

for (t in traits)

pred[, t] = predict(fitted, node = t, data = dtest[, nodes(model)])

predict each trait in turn, given all the genes.

for (t in traits)

post[, t] = predict(fitted, node = t,

data = dtest[, names(dtest) %in% genes, drop = FALSE],

method = "bayes-lw", n = 1000)

return(list(model = fitted, pred = pred, post = post))

})

Marco Scutari University of Oxford

Two Case Studies

Averaging the Models from Cross-Validation
average.the.model = function(batch, data) {

gather all the arc lists.

arclist = list()

for (i in seq_along(batch)) {
extract the models.

run = batch[[i]]$models

for (j in seq_along(run))

arclist[[length(arclist) + 1]] = arcs(run[[j]])

}#FOR
compute arc strengths.

nodes = unique(unlist(arclist))

str = custom.strength(arclist, nodes = nodes)

estimate the significance threshold and average the networks.

averaged = averaged.network(str)

subset the network to remove isolated nodes.

relnodes = nodes(averaged)[sapply(nodes, degree, object = averaged) > 0]

averaged2 = subgraph(averaged, relnodes)

str2 = str[(str$from %in% relnodes) & (str$to %in% relnodes),]

save the fitted averaged network.

fitted = bn.fit(averaged2, data[, nodes(averaged2)])

return(list(model = averaged2, strength = str2, fitted = fitted))

}#AVERAGE.THE.MODEL

Marco Scutari University of Oxford

Two Case Studies

The Averaged Bayesian Network (44 nodes, 66 arcs)

YR.GLASS

HT

YR.FIELDMIL

FT
G418

G311

G1217

G800

G866

G795

G2570
G260

G2920G832

G1896

G2953

G266

G847 G942

G200

G257

G2208

G1373

G599

G261

G383

G1853

G1033

G1945

G1338
G1276

G1263

G1789

G2318
G1294

G1800

YLD

FUS

G1750

G524

G775

G2835

G43

PHYSICAL TRAITS
OF THE PLANT

DISEASES

Marco Scutari University of Oxford

Two Case Studies

Spotting Confounding Effects

HT

G2570

G832

G1896

G2953

YLD

FUS

G2835(WHEAT) Traits and genes can interact in complex
ways that may not be obvious when they are
studied individually, but that can be
explained by considering neighbouring
variables in the network.
An example: yield apparently increases with
FUS disease scores!

What we are actually measuring is the confounding effect of the plant’s
height (FUS ← HT → YLD); if we simulate FUS and yield conditional
on each quartile of height, FUS has a negative effect on yield.

We can verify this by simulation using conditional probability queries
implemented in bnlearn in the cpquery() and cpdist() functions.

Marco Scutari University of Oxford

Two Case Studies

Spotting Confounding Effects

sim = cpdist(fitted, node = c("FUS", "YLD"),

evidence = (HT > quantile(wheat$HT, 0.75)))

cor(simFUS, simHT)

sim = cpdist(fitted, node = c("FUS", "YLD"),

evidence = (HT < quantile(wheat$HT, 0.75)) &

(HT > quantile(wheat$HT, 0.50)))

cor(simFUS, simHT)

sim = cpdist(fitted, node = c("FUS", "YLD"),

evidence = (HT < quantile(wheat$HT, 0.50)) &

(HT > quantile(wheat$HT, 0.25)))

cor(simFUS, simHT)

sim = cpdist(fitted, node = c("FUS", "YLD"),

evidence = (HT < quantile(wheat$HT, 0.25)))

cor(simFUS, simHT)

Marco Scutari University of Oxford

Two Case Studies

Separating Direct and Indirect Effects

Living beings work as complex systems in
which all parts interact with each other;
hence it is important to separate its direct
and indirect effects. Normally that would
require expensive experiments; but it can be
done in BNs with Pearl’s causal inference.
Consider gene G1533 in the rice BN: it is
putative causal for yield (YLD), height (HT)
and flowering time (FT).

HT

FT

G4432

G1533

G4109

YLD

(RICE)

• The difference in mean between the two homozygotes is +4.5cm in HT, +2.28 weeks in
FT and +0.28 t/ha in YLD.

• Controlling for YLD and FT, the difference for HT halves (+2.1cm);

• Controlling for YLD and HT, the difference for FT is about the same (+2.3 weeks);

• Controlling for HT and FT the difference for YLD halves (+0.16 t/ha).

We can determine by simulation that the gene has a direct causal effect on FT
and that the effect on the other traits is partly indirect because it is much
smaller in our simulated experiments.

Marco Scutari University of Oxford

Two Case Studies

Separating Direct and Indirect Effects
control.ht = mutilated(bn.net(fitted), list("YLD" = 0, "FT" = 0))

control.ht = bn.fit(control.ht, indica[, nodes(control.ht)])

sim.aa = cpdist(control.ht, node = c("HT"), evidence = list(G1533 = 0),

method = "lw")

sim.AA = cpdist(control.ht, node = c("HT"), evidence = list(G1533 = 2),

method = "lw")

colMeans(sim.AA) - colMeans(sim.aa)

control.ft = mutilated(bn.net(fitted), list("YLD" = 0, "HT" = 0))

control.ft = bn.fit(control.ft, indica[, nodes(control.ft)])

sim.aa = cpdist(control.ft, node = c("FT"), evidence = list(G1533 = 0),

method = "lw")

sim.AA = cpdist(control.ft, node = c("FT"), evidence = list(G1533 = 2),

method = "lw")

colMeans(sim.AA) - colMeans(sim.aa)

control.yld = mutilated(bn.net(fitted), list("FT" = 0, "HT" = 0))

control.yld = bn.fit(control.yld, indica[, nodes(control.yld)])

sim.aa = cpdist(control.yld, node = c("YLD"), evidence = list(G1533 = 0),

method = "lw")

sim.AA = cpdist(control.yld, node = c("YLD"), evidence = list(G1533 = 2),

method = "lw")

colMeans(sim.AA) - colMeans(sim.aa)

Marco Scutari University of Oxford

Two Case Studies

Case Study: Environmental Statistics and Epidemiology

Another challenging application I worked on with bnlearn is an environmental
data analysis on various air pollutants in English regions and their effect on
public health. Big data (28 millions records) with missing values (again in the
millions) and heterogeneous variables (continuous and discrete).
This prompted me to implement several things:

• the Structural EM algorithm to learn the structure of a BN in the
presence of missing values, in structural.em();

• hybrid (conditional Gaussian) BNs that can handle both discrete and
continuous data at the same time;

• parallel parameter learning in bn.fit().

PUBLICATION
Earth and Space Science
Modelling Air Pollution, Climate and Health Data Using Bayesian
Networks: a Case Study of the English Regions.
C. Vitolo et al., Earth and Space Science (2017).

Marco Scutari University of Oxford

Two Case Studies

The Bayesian Network

Altitude

blh

co

CVD60

Day

Hour

Latitude Longitude

Month

no2o3

pm10

pm2.5

Region

Season

so2

ssr

t2m

tp

Type

wd ws

Year Zone

Marco Scutari University of Oxford

Two Case Studies

Parallel Structural EM (Initialisation)

The main challenge in this analysis was to combine missing data
imputation with EM with structure learning while using parallel
computing, which was crucial given the size of the data.

initialise the cluster, load bnlearn and export the blacklist.

library(parallel)

cl = makeCluster(20)

invisible(clusterEvalQ(cl, library(bnlearn)))

clusterExport(cl, "bl")

split the data and export one part to each slave.

split = split(sample(nrow(training)), seq(length(cl)))

for (i in seq_along(split)) {

data_split = training[split[[i]], , drop = FALSE]

clusterExport(cl[i], "data_split")

}#FOR

Marco Scutari University of Oxford

Two Case Studies

Parallel Structural EM (Single Iteration)

export the current network.

dagCurrent = dagNew

bnCurrent = bnNew

clusterExport(cl, c("dagCurrent", "bnCurrent"))

expectation step: impute the missing data points on the data splits.

current = training

clusterEvalQ(cl, complete = impute_split())

maximisation step: learn one network structure from each split.

models = parLapply(cl, seq(length(cl)), function(...) {

hc(complete, blacklist = bl, start = dagCurrent)

})

average the networks (and make sure the result is completely directed).

strengthNew = custom.strength(models, nodes = nodes(dagCurrent))

dagNew = averaged.network(strengthNew)

dagNew = cextend(dagNew)

Marco Scutari University of Oxford

Two Case Studies

Parallel Structural EM (Single Iteration)

if there was no change, the network from the previous iteration is final.

if (isTRUE(all.equal(dagCurrent, dagNew)))

break

retrieve the imputed values.

for (i in incompleteColumns) {

imputed = clusterCall(cl, function(col) complete[, col], col = i)

current[unlist(split), i] = unlist(imputed)

}#THEN

fit the parameters.

bnNew = bn.fit(dagNew, data = current, keep.fitted = FALSE)

So, in each iteration of EM we perform both imputation (impute(), the
E step) and structure learning (hc(), the M step) in a distributed
manner thanks to the parallel package.

Marco Scutari University of Oxford

Two Case Studies

Conclusions

• bnlearn is an R package that implements structure learning,
parameter learning and inference for Bayesian networks: its aim is to
provide a complete, integrated workflow.

• bnlearn aims to be useful for both methodological research and
simulation studies; and for analysing challenging real-world data.

• bnlearn is designed to be modular, decoupling algorithms and
statistical approaches; scalable, thanks to an efficient C backend; and
with a public interface that is easy to use.

• bnlearn has been continuously maintained and it is under ongoing
development; proposals and contributions are welcome.

Marco Scutari University of Oxford

	Two Case Studies: [-1.4cm] Statistical Genetics [-1.4cm] and Environmental Statistics 2

